maxin-cn's picture
Upload folder using huggingface_hub
be791d6 verified
import os
import torch
import argparse
import torchvision
from pipeline_videogen import VideoGenPipeline
from pipelines.pipeline_inversion import VideoGenInversionPipeline
from diffusers.schedulers import DDIMScheduler
from diffusers.models import AutoencoderKL
from diffusers.models import AutoencoderKLTemporalDecoder
from transformers import CLIPTokenizer, CLIPTextModel
from omegaconf import OmegaConf
import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from utils import find_model
from models import get_models
import imageio
import decord
import numpy as np
from copy import deepcopy
from PIL import Image
from datasets import video_transforms
from torchvision import transforms
def prepare_image(path, vae, transform_video, device, dtype=torch.float16):
with open(path, 'rb') as f:
image = Image.open(f).convert('RGB')
image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2)
image, ori_h, ori_w, crops_coords_top, crops_coords_left = transform_video(image)
image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor)
image = image.unsqueeze(2)
return image
def separation_content_motion(video_clip):
"""
Separate content and motion in a given video.
Args:
video_clip: A given video clip, shape [B, C, F, H, W]
Return:
base_frame: Base frame, shape [B, C, 1, H, W]
motions: Motions based on base frame, shape [B, C, F-1, H, W]
"""
# Selecting the first frame from each video in the batch as the base frame
base_frame = video_clip[:, :, :1, :, :]
# Calculating the motion (difference between each frame and the base frame)
motions = video_clip[:, :, 1:, :, :] - base_frame
return base_frame, motions
class DecordInit(object):
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader."""
def __init__(self, num_threads=1):
self.num_threads = num_threads
self.ctx = decord.cpu(0)
def __call__(self, filename):
"""Perform the Decord initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
reader = decord.VideoReader(filename,
ctx=self.ctx,
num_threads=self.num_threads)
return reader
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'sr={self.sr},'
f'num_threads={self.num_threads})')
return repr_str
def main(args):
# torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 # torch.float16
unet = get_models(args).to(device, dtype=torch.float16)
state_dict = find_model(args.ckpt)
unet.load_state_dict(state_dict)
if args.enable_vae_temporal_decoder:
if args.use_dct:
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device)
else:
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device)
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
else:
vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64)
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device)
# set eval mode
unet.eval()
vae.eval()
text_encoder.eval()
scheduler_inversion = DDIMScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,)
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
# beta_end=0.017,
beta_schedule=args.beta_schedule,)
videogen_pipeline = VideoGenPipeline(vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler_inversion,
unet=unet).to(device)
videogen_pipeline_inversion = VideoGenInversionPipeline(vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
unet=unet).to(device)
# videogen_pipeline.enable_xformers_memory_efficient_attention()
# videogen_pipeline.enable_vae_slicing()
transform_video = video_transforms.Compose([
video_transforms.ToTensorVideo(),
video_transforms.SDXLCenterCrop((args.image_size[0], args.image_size[1])), # center crop using shor edge, then resize
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
# video_path = './video_editing/A_man_walking_on_the_beach.mp4'
video_path = './video_editing/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.mp4'
video_reader = DecordInit()
video = video_reader(video_path)
frame_indice = np.linspace(0, 15, 16, dtype=int)
video = torch.from_numpy(video.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
video = video / 255.0
video = video * 2.0 - 1.0
latents = vae.encode(video.to(dtype=torch.float16, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor).unsqueeze(0).permute(0, 2, 1, 3, 4)
base_content, motion_latents = separation_content_motion(latents)
# image_path = "./video_editing/a_man_walking_in_the_park.png"
image_path = "./video_editing/a_cute_corgi_walking_in_the_park.png"
edit_content = prepare_image(image_path, vae, transform_video, device, dtype=torch.float16).to(device)
if not os.path.exists(args.save_img_path):
os.makedirs(args.save_img_path)
# prompt_inversion = 'a man walking on the beach'
prompt_inversion = 'a corgi walking in the park at sunrise, oil painting style'
latents = videogen_pipeline_inversion(prompt_inversion,
latents=motion_latents,
base_content=base_content,
video_length=args.video_length,
height=args.image_size[0],
width=args.image_size[1],
num_inference_steps=args.num_sampling_steps,
guidance_scale=1.0,
# guidance_scale=args.guidance_scale,
motion_bucket_id=args.motion_bucket_id,
output_type="latent").video
# prompt = 'a man walking in the park'
prompt = 'a corgi walking in the park at sunrise, oil painting style'
videos = videogen_pipeline(prompt,
latents=latents,
base_content=edit_content,
video_length=args.video_length,
height=args.image_size[0],
width=args.image_size[1],
num_inference_steps=args.num_sampling_steps,
guidance_scale=1.0,
# guidance_scale=args.guidance_scale,
motion_bucket_id=args.motion_bucket_id,
enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video
imageio.mimwrite(args.save_img_path + prompt.replace(' ', '_') + '_%04d' % args.run_time + '-imageio.mp4', videos[0], fps=8, quality=8) # highest quality is 10, lowest is 0
print('save path {}'.format(args.save_img_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/sample.yaml")
args = parser.parse_args()
main(OmegaConf.load(args.config))