File size: 7,495 Bytes
e1b36f1
 
99bfe67
e1b36f1
 
 
 
 
 
 
 
 
9a85c9a
 
99bfe67
e1b36f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99bfe67
 
e1b36f1
 
 
99bfe67
e1b36f1
 
 
 
 
 
 
 
 
99bfe67
e1b36f1
99bfe67
e1b36f1
 
 
99bfe67
e1b36f1
9a85c9a
e1b36f1
 
 
99bfe67
e1b36f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9073c2
e1b36f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99bfe67
34be6b7
e1b36f1
 
 
 
 
 
 
 
99bfe67
e1b36f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys, os
sys.path.append('BV2')
import torch
import argparse
import BV2.commons 
import BV2.utils
from BV2.models import Synthesizer
from BV2.text.symbols import symbols
from BV2.text import cleaned_text_to_sequence, get_bert
from BV2.text.cleaner import clean_text
import gradio as gr
import soundfile as sf
from datetime import datetime
import pytz

tz = pytz.timezone('Asia/Shanghai')
net_g = None
models = {
    "Mellowdear": "./BV2/MODELS/adorabledarling.pth",
    "MistyNikki": "./BV2/MODELS/nikki9400.pth",
    "Silverleg": "./BV2/MODELS/J8900.pth",
    "Xelo": "./BV2/MODELS/HER_1100.pth",
    "Rrabbitt": "./BV2/MODELS/rabbit4900.pth",
    "VVV": "./BV2/MODELS/v3.pth",
    "AlluWin": "./BV2/MODELS/AW.pth",
    "Hypnosia": "./BV2/MODELS/hypno.pth",
    "PremJ": "./BV2/MODELS/premj.pth",
    "Umemura": "./BV2/MODELS/take2.pth",
    "ArasakaAI": "./BV2/MODELS/Arasaka.pth",
     "Terra": "./BV2/MODELS/TERRA.pth",
}

def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = BV2.commons.intersperse(phone, 0)
        tone = BV2.commons.intersperse(tone, 0)
        language = BV2.commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", HPS)
    with torch.no_grad():
        x_tst=phones.to(devicee).unsqueeze(0)
        tones=tones.to(devicee).unsqueeze(0)
        lang_ids=lang_ids.to(devicee).unsqueeze(0)
        bert = bert.to(devicee).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(devicee)
        del phones
        speakers = torch.LongTensor([HPS.data.spk2id[sid]]).to(devicee)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        sf.write("tmp.wav", audio, 44100)
        return audio



def convert_wav_to_mp3(wav_file):   
    now = datetime.now(tz).strftime('%m%d%H%M%S')    
    os.makedirs('out', exist_ok=True)  
    output_path_mp3 = os.path.join('out', f"{now}.mp3")

    renamed_input_path = os.path.join('in', f"in.wav")
    os.makedirs('in', exist_ok=True)
    os.rename(wav_file.name, renamed_input_path)
    command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
    os.system(" ".join(command))
    return output_path_mp3
    
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
    global net_g,speakers,tz
    now = datetime.now(tz).strftime('%m-%d %H:%M:%S')
    model_path = models[model]
    net_g, _, _, _ = BV2.utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    print(f'✨{now}-开始生成:{text}')
    try:
        with torch.no_grad():
            audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
        with open('tmp.wav', 'rb') as wav_file:
            mp3 = convert_wav_to_mp3(wav_file) 
        return "生成语音成功", (HPS.data.sampling_rate, audio), mp3
    except Exception as e:
        return "生成语音失败:" + str(e), None, None

current_dir = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(current_dir, "BV2/configs/config.json")

if __name__ == "__main__":
    HPS = BV2.utils.get_hparams_from_file(config_path)
    devicee = "cuda:0" if torch.cuda.is_available() else "cpu"
   
    net_g = Synthesizer(
        len(symbols),
        HPS.data.filter_length // 2 + 1,
        HPS.train.segment_size // HPS.data.hop_length,
        n_speakers=HPS.data.n_speakers,
        **HPS.model).to(devicee)
    _ = net_g.eval()

    speaker_ids = HPS.data.spk2id
    speaker = list(speaker_ids.keys())[0]
    theme='remilia/Ghostly'
    
    with gr.Blocks(theme=theme) as app:
        with gr.Column():
            with gr.Column():
                gr.HTML('''<br><br>
    <p style="margin-bottom: 10px; font-size: 120%">
   Use <b>English</b> to generate, please go to this <a href="https://huggingface.co/spaces/Ailyth/Multi-voice-TTS-GPT-SoVITS" target="_blank">SPACE</a>
   </p>
    <p style="margin-bottom: 10px; font-size: 110%">
   <b>日本語</b>で生成するために、<a href="https://huggingface.co/spaces/Ailyth/Multi-voice-TTS-GPT-SoVITS" target="_blank">こちら</a>へ進んでください。
    </p>''')
                gr.HTML('''
                <hr>
                <p style="margin-bottom: 10px; font-size: 130%"><strong>以下仅供测试用,质量参差</strong>Only read Chinese</p>
                <p>
                模型训练以及推理基于开源项目<a href="https://github.com/fishaudio/Bert-VITS2">Bert-VITS2</a>
                (具体使用的是9月份的版本,可能后续项目效果更好,请自行尝试训练)</p>
                ''')
                text = gr.TextArea(label="输入需要生成语音的文字(标点也会影响语气)", placeholder="输入文字",
                                value="今天拿白金了吗",
                                info="使用huggingface的免费CPU进行推理,因此速度不快,一次性不要输入超过500汉字。字数越多,生成速度越慢,请耐心等待,只会说中文。",
                                  )
                model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='声音模型')
                with gr.Accordion(label="展开设置生成参数", open=False):
                    sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
                    noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
                    noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
                    length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
                btn = gr.Button("✨生成", variant="primary")
            with gr.Column():
                audio_output = gr.Audio(label="试听")
                MP3_output = gr.File(label="💾下载")
                text_output = gr.Textbox(label="调试信息")
                gr.Markdown("""
                
                """)
        btn.click(
                tts_generator,
                inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
                outputs=[text_output, audio_output,MP3_output]
                )
        gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP99" /></div>''')
    app.launch(share=True)