Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import re | |
import json | |
import torch | |
import torch.utils.data | |
from transformers import AutoTokenizer, AutoModel | |
from tqdm import tqdm | |
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True) | |
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).bfloat16().cuda() | |
choices = ["A", "B", "C", "D"] | |
choice_tokens = [tokenizer.encode(choice, add_special_tokens=False)[0] for choice in choices] | |
def build_prompt(text): | |
return "[Round {}]\n\n้ฎ๏ผ{}\n\n็ญ๏ผ".format(1, text) | |
extraction_prompt = '็ปผไธๆ่ฟฐ๏ผABCDไธญๆญฃ็กฎ็้้กนๆฏ๏ผ' | |
accuracy_dict, count_dict = {}, {} | |
with torch.no_grad(): | |
for entry in glob.glob("./CEval/val/**/*.jsonl", recursive=True): | |
dataset = [] | |
with open(entry, encoding='utf-8') as file: | |
for line in file: | |
dataset.append(json.loads(line)) | |
correct = 0 | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) | |
for batch in tqdm(dataloader): | |
texts = batch["inputs_pretokenized"] | |
queries = [build_prompt(query) for query in texts] | |
inputs = tokenizer(queries, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') | |
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=512) | |
intermediate_outputs = [] | |
for idx in range(len(outputs)): | |
output = outputs.tolist()[idx][len(inputs["input_ids"][idx]):] | |
response = tokenizer.decode(output) | |
intermediate_outputs.append(response) | |
answer_texts = [text + intermediate + "\n" + extraction_prompt for text, intermediate in | |
zip(texts, intermediate_outputs)] | |
input_tokens = [build_prompt(answer_text) for answer_text in answer_texts] | |
inputs = tokenizer(input_tokens, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') | |
outputs = model(**inputs, return_last_logit=True) | |
logits = outputs.logits[:, -1] | |
logits = logits[:, choice_tokens] | |
preds = logits.argmax(dim=-1) | |
correct += (preds.cpu() == batch["label"]).sum().item() | |
accuracy = correct / len(dataset) | |
print(entry, accuracy) | |
accuracy_dict[entry] = accuracy | |
count_dict[entry] = len(dataset) | |
acc_total, count_total = 0.0, 0 | |
for key in accuracy_dict: | |
acc_total += accuracy_dict[key] * count_dict[key] | |
count_total += count_dict[key] | |
print(acc_total / count_total) |