Spaces:
Running
Running
import spaces | |
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import gradio as gr | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
if not huggingface_token: | |
pass | |
print("no HUGGINGFACE_TOKEN if you need set secret ") | |
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
model_id = "openbmb/MiniCPM-2B-dpo-bf16" | |
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
dtype = torch.bfloat16 | |
tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True) | |
print(model_id,device,dtype) | |
histories = [] | |
#model = None | |
def call_generate_text(prompt, system_message="You are a helpful assistant."): | |
if prompt =="": | |
print("empty prompt return") | |
return "" | |
global histories | |
#global model | |
#if model != None:# and model.is_cuda: | |
# print("Model is alive") | |
#else: | |
# model = AutoModelForCausalLM.from_pretrained( | |
# model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
#) | |
messages = [ | |
{"role": "system", "content": system_message}, | |
] | |
messages += histories | |
user_message = {"role": "user", "content": prompt} | |
messages += [user_message] | |
try: | |
text = generate_text(messages) | |
histories += [user_message,{"role": "assistant", "content": text}] | |
#model.to("cpu") | |
return text | |
except RuntimeError as e: | |
print(f"An unexpected error occurred: {e}") | |
#model = None | |
return "" | |
iface = gr.Interface( | |
fn=call_generate_text, | |
inputs=[ | |
gr.Textbox(lines=3, label="Input Prompt"), | |
gr.Textbox(lines=2, label="System Message", value="あなたは親切なアシスタントで常に日本語で返答します。"), | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title=f"{model_id}", | |
description=f"{model_id} CPU", | |
) | |
print("Initialized") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device,trust_remote_code=True | |
) | |
def generate_text(messages): | |
#model.to("cuda") | |
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device) | |
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7) | |
generated_output = result[0]["generated_text"] | |
if isinstance(generated_output, list): | |
for message in reversed(generated_output): | |
if message.get("role") == "assistant": | |
content= message.get("content", "No content found.") | |
return content | |
return "No assistant response found." | |
else: | |
return "Unexpected output format." | |
if __name__ == "__main__": | |
print("Main") | |
iface.launch() |