|
import spaces |
|
import gradio as gr |
|
import subprocess |
|
from PIL import Image,ImageEnhance,ImageFilter |
|
import json |
|
import numpy as np |
|
from skimage.exposure import match_histograms |
|
|
|
import mp_box |
|
''' |
|
Face landmark detection based Face Detection. |
|
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker |
|
from model card |
|
https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20Card%20(Short%20Range).pdf |
|
Licensed Apache License, Version 2.0 |
|
Train with google's dataset(more detail see model card) |
|
|
|
Not Face Detector based |
|
https://ai.google.dev/edge/mediapipe/solutions/vision/face_detector |
|
|
|
Bacause this is part of getting-landmark program and need control face edge. |
|
So I don't know which one is better.never compare these. |
|
''' |
|
|
|
def color_match(base_image,cropped_image): |
|
reference = np.array(base_image) |
|
target =np.array(cropped_image) |
|
matched = match_histograms(target, reference,channel_axis=-1) |
|
return Image.fromarray(matched) |
|
|
|
def select_box(boxes,box_type): |
|
if box_type == "type-3": |
|
box = boxes[2] |
|
elif box_type =="type-2": |
|
box = boxes[1] |
|
elif box_type =="type-1": |
|
box = boxes[0] |
|
else: |
|
box=[0,0,image.size[0],image.size[1]] |
|
box_width = box[2] |
|
box_height = box[3] |
|
box = mp_box.xywh_to_xyxy(box) |
|
return box,box_width,box_height |
|
|
|
def resize_image_in_box(image,box_width,box_height,keep_aspect=True,resampling=None): |
|
|
|
aspect_ratio = image.width / image.height |
|
if box_width / box_height >= aspect_ratio: |
|
new_width = int(box_height * aspect_ratio) |
|
new_height = box_height |
|
else: |
|
new_width = box_width |
|
new_height = int(box_width / aspect_ratio) |
|
|
|
|
|
if resampling == None: |
|
image_area = image.width * image.height |
|
if box_width * box_height > image_area: |
|
resampling = Image.Resampling.BICUBIC |
|
else: |
|
resampling = Image.Resampling.LANCZOS |
|
|
|
resized = image.resize((new_width,new_height),resampling) |
|
offset_x = int((box_width -new_width)/2) |
|
offset_y = int((box_height -new_height)/2) |
|
return resized,offset_x,offset_y |
|
|
|
|
|
def process_images(image,replace_image=None,replace_image_need_crop=False,box_type="type-3",fill_color_mode=False,fill_color="black",custom_color="rgba(255,255,255,1)",image_size=1024,margin_percent=0,filter_value="None",match_color=True,progress=gr.Progress(track_tqdm=True)): |
|
|
|
if image == None: |
|
raise gr.Error("Need Image") |
|
|
|
|
|
image_width,image_height = image.size |
|
boxes,mp_image,face_landmarker_result = mp_box.mediapipe_to_box(image) |
|
box,box_width,box_height = select_box(boxes,box_type) |
|
|
|
|
|
if replace_image!=None: |
|
print("replace mode") |
|
|
|
if replace_image_need_crop: |
|
replace_boxes,mp_image,face_landmarker_result = mp_box.mediapipe_to_box(replace_image) |
|
replace_box,replace_box_width,replace_box_height = select_box(replace_boxes,box_type) |
|
|
|
keep_aspect = True |
|
|
|
if fill_color_mode: |
|
if replace_image_need_crop: |
|
cropped = replace_image.crop(replace_box) |
|
cropped,off_x,off_y = resize_image_in_box(cropped,box_width,box_height,keep_aspect) |
|
else: |
|
cropped = replace_image.crop(box) |
|
off_x = int((box_width -cropped.width)/2) |
|
off_y = int((box_height -cropped.height)/2) |
|
|
|
if match_color: |
|
cropped = color_match(image.crop(box),cropped) |
|
|
|
image.paste(cropped,[box[0]+off_x,box[1]+off_y]) |
|
return image |
|
else: |
|
|
|
if margin_percent>0: |
|
h_margin = int(box_width*margin_percent/100) |
|
v_margin = int(box_height*margin_percent/100) |
|
|
|
box[0] = max(0,box[0]-h_margin) |
|
box[1] = max(0,box[1]-v_margin) |
|
box[2] = min(image_width-1,box[2]+h_margin) |
|
box[3] = min(image_height-1,box[3]+v_margin) |
|
box_width = box[2]-box[0] |
|
box_height = box[3]-box[1] |
|
|
|
if replace_image_need_crop: |
|
replace_image = replace_image.crop(replace_box) |
|
|
|
|
|
|
|
replace_resized,off_x,off_y = resize_image_in_box(replace_image,box_width,box_height,keep_aspect) |
|
if match_color: |
|
replace_resized = color_match(image.crop(box),replace_resized) |
|
|
|
image.paste(replace_resized,[box[0]+off_x,box[1]+off_y]) |
|
return image |
|
|
|
|
|
|
|
if margin_percent>0: |
|
h_margin = int(box_width*margin_percent/100) |
|
v_margin = int(box_height*margin_percent/100) |
|
|
|
box[0] = max(0,box[0]-h_margin) |
|
box[1] = max(0,box[1]-v_margin) |
|
box[2] = min(image_width-1,box[2]+h_margin) |
|
box[3] = min(image_height-1,box[3]+v_margin) |
|
|
|
|
|
if fill_color_mode: |
|
|
|
color_map={ |
|
"black":[0,0,0,1], |
|
"white":[255,255,255,1], |
|
"gray":[127,127,127,1], |
|
"red":[255,0,0,1], |
|
"brown":[92,33,31,1], |
|
"pink":[255,192,203,1], |
|
} |
|
if fill_color == "custom": |
|
color_value = custom_color.strip("rgba()").split(",") |
|
color_value[0] = int(float(color_value[0])) |
|
color_value[1] = int(float(color_value[1])) |
|
color_value[2] = int(float(color_value[2])) |
|
else: |
|
color_value = color_map[fill_color] |
|
|
|
cropped = image.crop(box) |
|
|
|
img = Image.new('RGBA', image.size, (color_value[0], color_value[1], color_value[2])) |
|
img.paste(cropped,[box[0],box[1]]) |
|
return img |
|
else: |
|
|
|
cropped = image.crop(box) |
|
resized = resize_image_by_max_dimension(cropped,image_size) |
|
|
|
filter_map={ |
|
"None":None, |
|
"Blur":ImageFilter.BLUR,"Smooth More":ImageFilter.SMOOTH_MORE,"Smooth":ImageFilter.SMOOTH,"Sharpen":ImageFilter.SHARPEN,"Edge Enhance":ImageFilter.EDGE_ENHANCE,"Edge Enhance More":ImageFilter.EDGE_ENHANCE_MORE |
|
} |
|
|
|
if filter_value not in filter_map: |
|
raise gr.Error(f"filter {filter_value} not found") |
|
|
|
if filter_value != "None": |
|
|
|
|
|
|
|
enhancer = ImageEnhance.Sharpness(resized) |
|
resized = resized.filter(filter_map[filter_value]) |
|
|
|
|
|
|
|
return resized |
|
|
|
|
|
def resize_image_by_max_dimension(image, max_size, resampling=Image.Resampling.BICUBIC): |
|
image_width, image_height = image.size |
|
|
|
max_dimension = max(image_width, image_height) |
|
|
|
ratio = max_size / max_dimension |
|
|
|
new_width = int(image_width * ratio) |
|
new_height = int(image_height * ratio) |
|
|
|
return image.resize((new_width, new_height), resampling) |
|
|
|
|
|
def read_file(file_path: str) -> str: |
|
"""read the text of target file |
|
""" |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
|
|
return content |
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
.grid-container { |
|
display: flex; |
|
align-items: center; |
|
justify-content: center; |
|
gap:10px |
|
} |
|
|
|
.image { |
|
width: 128px; |
|
height: 128px; |
|
object-fit: cover; |
|
} |
|
|
|
.text { |
|
font-size: 16px; |
|
} |
|
""" |
|
|
|
|
|
def update_button_label(image): |
|
if image == None: |
|
print("none replace") |
|
return gr.Button(visible=True),gr.Button(visible=False),gr.Row(visible=True),gr.Row(visible=True) |
|
else: |
|
return gr.Button(visible=False),gr.Button(visible=True),gr.Row(visible=False),gr.Row(visible=False) |
|
|
|
def update_visible(fill_color_mode,image): |
|
if image != None: |
|
return gr.Row(visible=False),gr.Row(visible=False) |
|
|
|
if fill_color_mode: |
|
return gr.Row(visible=False),gr.Row(visible=True) |
|
else: |
|
return gr.Row(visible=True),gr.Row(visible=False) |
|
|
|
with gr.Blocks(css=css, elem_id="demo-container") as demo: |
|
with gr.Column(): |
|
gr.HTML(read_file("demo_header.html")) |
|
gr.HTML(read_file("demo_tools.html")) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Upload") |
|
box_type = gr.Dropdown(label="box-type",value="type-3",choices=["type-1","type-2","type-3"]) |
|
with gr.Row(elem_id="prompt-container", equal_height=False): |
|
with gr.Row(): |
|
btn1 = gr.Button("Face Crop", elem_id="run_button",variant="primary") |
|
btn2 = gr.Button("Face Replace", elem_id="run_button2",variant="primary",visible=False) |
|
|
|
replace_image = gr.Image(sources=['upload','clipboard'],image_mode='RGB',elem_id="replace_upload", type="pil", label="replace image") |
|
replace_image_need_crop = gr.Checkbox(label="Replace image need crop",value=False) |
|
|
|
with gr.Accordion(label="Advanced Settings", open=False): |
|
with gr.Row(equal_height=True): |
|
fill_color_mode = gr.Checkbox(label="Fill Color Mode/No Resize",value=False) |
|
match_color = gr.Checkbox(label="Match Color",value=True,info="skimage match_histograms") |
|
margin_percent = gr.Slider( |
|
label="Margin percent",info = "add extra space", |
|
minimum=0, |
|
maximum=200, |
|
step=1, |
|
value=0, |
|
interactive=True) |
|
|
|
|
|
row1 = gr.Row(equal_height=True) |
|
row2 = gr.Row(equal_height=True,visible=False) |
|
fill_color_mode.change(update_visible,[fill_color_mode,replace_image],[row1,row2]) |
|
with row1: |
|
image_size = gr.Slider( |
|
label="Image Size",info = "cropped face size", |
|
minimum=8, |
|
maximum=2048, |
|
step=1, |
|
value=1024, |
|
interactive=True) |
|
|
|
|
|
|
|
|
|
filter_value = gr.Dropdown(label="Filter",value="None",choices=["Blur","Smooth More","Smooth","None","Sharpen","Edge Enhance","Edge Enhance More"]) |
|
with row2: |
|
|
|
fill_color = gr.Dropdown(label="fill color",choices=["black","white","gray","red","brown","pink","custom"],value="gray") |
|
custom_color = gr.ColorPicker(label="custom color",value="rgba(250, 218, 205, 1)") |
|
|
|
replace_image.change(update_button_label,replace_image,[btn1,btn2,row1,row2]) |
|
with gr.Column(): |
|
image_out = gr.Image(label="Output", elem_id="output-img") |
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.on( |
|
[btn1.click,btn2.click], |
|
fn=process_images, inputs=[image,replace_image,replace_image_need_crop,box_type,fill_color_mode,fill_color,custom_color,image_size,margin_percent,filter_value,match_color], outputs =[image_out], api_name='infer' |
|
) |
|
gr.Examples( |
|
examples =["examples/00004200.jpg"], |
|
inputs=[image] |
|
) |
|
gr.HTML(read_file("demo_footer.html")) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|