Akjava's picture
add none
56e166f
raw
history blame
3.83 kB
import spaces
import gradio as gr
import subprocess
from PIL import Image
import json
import mp_box
'''
Face landmark detection based Face Detection.
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker
from model card
https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20Card%20(Short%20Range).pdf
Licensed Apache License, Version 2.0
Train with google's dataset(more detail see model card)
Not Face Detector based
https://ai.google.dev/edge/mediapipe/solutions/vision/face_detector
Bacause this is part of getting-landmark program and need control face edge.
So I don't know which one is better.never compare these.
'''
#@spaces.GPU(duration=120)
def process_images(image,no_mesh_draw=False,square_shape=False,progress=gr.Progress(track_tqdm=True)):
if image == None:
raise gr.Error("Need Image")
progress(0, desc="Start Mediapipe")
boxes,mp_image,face_landmarker_result = mp_box.mediapipe_to_box(image)
if no_mesh_draw:
annotated_image = image
else:
annotated_image = mp_box.draw_landmarks_on_image(face_landmarker_result,image)
annotation_boxes = []
jsons ={
}
index = 1
print(boxes)
if square_shape:
xy_boxes = boxes[3:]
else:
xy_boxes = boxes[:3]
print(len(xy_boxes))
for box in xy_boxes:
label=f"type-{index}"
print(box)
print(mp_box.xywh_to_xyxy(box))
annotation_boxes.append([mp_box.xywh_to_xyxy(box),label])
jsons[label] = boxes[index-1]
print(index)
index+=1
annotation_boxes.append(([0,0,1,1],"None"))
#print(annotation_boxes)
formatted_json = json.dumps(jsons, indent=1)
#return image
return [annotated_image,annotation_boxes],formatted_json
def read_file(file_path: str) -> str:
"""read the text of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
#css=css,
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Upload")
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
btn = gr.Button("Face Detect", elem_id="run_button",variant="primary")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row( equal_height=True):
no_mesh_draw = gr.Checkbox(label="No Mesh Drawing")
square_shape = gr.Checkbox(label="Square shape")
with gr.Column():
image_out = gr.AnnotatedImage(label="Output", elem_id="output-img")
text_out = gr.TextArea(label="JSON-Output")
btn.click(fn=process_images, inputs=[image,no_mesh_draw], outputs =[image_out,text_out], api_name='infer')
gr.Examples(
examples =["examples/00004200.jpg"],
inputs=[image]
)
gr.HTML(read_file("demo_footer.html"))
if __name__ == "__main__":
demo.launch()