Spaces:
Running
Running
import mediapipe as mp | |
from mediapipe.tasks import python | |
from mediapipe.tasks.python import vision | |
from mediapipe.framework.formats import landmark_pb2 | |
from mediapipe import solutions | |
import numpy as np | |
# for X,Y,W,H to x1,y1,x2,y2(Left-top,right-bottom style) | |
def xywh_to_xyxy(box): | |
return [box[0],box[1],box[0]+box[2],box[1]+box[3]] | |
def convert_to_box(face_landmarks_list,indices,w=1024,h=1024): | |
x1=w | |
y1=h | |
x2=0 | |
y2=0 | |
for index in indices: | |
x=min(w,max(0,(face_landmarks_list[0][index].x*w))) | |
y=min(h,max(0,(face_landmarks_list[0][index].y*h))) | |
if x<x1: | |
x1=x | |
if y<y1: | |
y1=y | |
if x>x2: | |
x2=x | |
if y>y2: | |
y2=y | |
return [int(x1),int(y1),int(x2-x1),int(y2-y1)] | |
def box_to_square(bbox): | |
box=list(bbox) | |
if box[2]>box[3]: | |
diff = box[2]-box[3] | |
box[3]+=diff | |
box[1]-=diff/2 | |
elif box[3]>box[2]: | |
diff = box[3]-box[2] | |
box[2]+=diff | |
box[0]-=diff/2 | |
return box | |
def face_landmark_result_to_box(face_landmarker_result,width=1024,height=1024): | |
face_landmarks_list = face_landmarker_result.face_landmarks | |
full_indices = list(range(456)) | |
MIDDLE_FOREHEAD = 151 | |
BOTTOM_CHIN_EX = 152 | |
BOTTOM_CHIN = 175 | |
CHIN_TO_MIDDLE_FOREHEAD = [200,14,1,6,18,9] | |
MOUTH_BOTTOM = [202,200,422] | |
EYEBROW_CHEEK_LEFT_RIGHT = [46,226,50,1,280,446,276] | |
LEFT_HEAD_OUTER_EX = 251 #on side face almost same as full | |
LEFT_HEAD_OUTER = 301 | |
LEFT_EYE_OUTER_EX = 356 | |
LEFT_EYE_OUTER = 264 | |
LEFT_MOUTH_OUTER_EX = 288 | |
LEFT_MOUTH_OUTER = 288 | |
LEFT_CHIN_OUTER = 435 | |
RIGHT_HEAD_OUTER_EX = 21 | |
RIGHT_HEAD_OUTER = 71 | |
RIGHT_EYE_OUTER_EX = 127 | |
RIGHT_EYE_OUTER = 34 | |
RIGHT_MOUTH_OUTER_EX = 58 | |
RIGHT_MOUTH_OUTER = 215 | |
RIGHT_CHIN_OUTER = 150 | |
# TODO naming line | |
min_indices=CHIN_TO_MIDDLE_FOREHEAD+EYEBROW_CHEEK_LEFT_RIGHT+MOUTH_BOTTOM | |
chin_to_brow_indices = [LEFT_CHIN_OUTER,LEFT_MOUTH_OUTER,LEFT_EYE_OUTER,LEFT_HEAD_OUTER,MIDDLE_FOREHEAD,RIGHT_HEAD_OUTER,RIGHT_EYE_OUTER,RIGHT_MOUTH_OUTER,RIGHT_CHIN_OUTER,BOTTOM_CHIN]+min_indices | |
box1 = convert_to_box(face_landmarks_list,min_indices,width,height) | |
box2 = convert_to_box(face_landmarks_list,chin_to_brow_indices,width,height) | |
box3 = convert_to_box(face_landmarks_list,full_indices,width,height) | |
#print(box) | |
return [box1,box2,box3,box_to_square(box1),box_to_square(box2),box_to_square(box3)] | |
def draw_landmarks_on_image(detection_result,rgb_image): | |
face_landmarks_list = detection_result.face_landmarks | |
annotated_image = np.copy(rgb_image) | |
# Loop through the detected faces to visualize. | |
for idx in range(len(face_landmarks_list)): | |
face_landmarks = face_landmarks_list[idx] | |
# Draw the face landmarks. | |
face_landmarks_proto = landmark_pb2.NormalizedLandmarkList() | |
face_landmarks_proto.landmark.extend([ | |
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks | |
]) | |
solutions.drawing_utils.draw_landmarks( | |
image=annotated_image, | |
landmark_list=face_landmarks_proto, | |
connections=mp.solutions.face_mesh.FACEMESH_TESSELATION, | |
landmark_drawing_spec=None, | |
connection_drawing_spec=mp.solutions.drawing_styles | |
.get_default_face_mesh_tesselation_style()) | |
return annotated_image | |
def mediapipe_to_box(image_data,model_path="face_landmarker.task"): | |
BaseOptions = mp.tasks.BaseOptions | |
FaceLandmarker = mp.tasks.vision.FaceLandmarker | |
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions | |
VisionRunningMode = mp.tasks.vision.RunningMode | |
options = FaceLandmarkerOptions( | |
base_options=BaseOptions(model_asset_path=model_path), | |
running_mode=VisionRunningMode.IMAGE | |
,min_face_detection_confidence=0, min_face_presence_confidence=0 | |
) | |
with FaceLandmarker.create_from_options(options) as landmarker: | |
if isinstance(image_data,str): | |
mp_image = mp.Image.create_from_file(image_data) | |
else: | |
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(image_data)) | |
face_landmarker_result = landmarker.detect(mp_image) | |
boxes = face_landmark_result_to_box(face_landmarker_result,mp_image.width,mp_image.height) | |
return boxes,mp_image,face_landmarker_result |