File size: 9,676 Bytes
6996634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85e9cd
6996634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# -- Utils .py file
# -- Libraries
from   typing                      import Any, Dict, List, Mapping, Optional
from   pydantic                    import Extra, Field, root_validator
from   langchain.llms.base         import LLM
from   langchain.utils             import get_from_dict_or_env
from   langchain.vectorstores      import Chroma
from   langchain.text_splitter     import RecursiveCharacterTextSplitter
from   langchain.chains            import RetrievalQA
from   langchain.document_loaders  import TextLoader
from   langchain.embeddings        import HuggingFaceEmbeddings
from   googletrans                 import Translator
import streamlit as st
import together
import textwrap
import spacy
import os
import re

os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"

# -- LLM class
class TogetherLLM(LLM):
    """Together large language models."""

    model: str = "togethercomputer/llama-2-70b-chat"
    """model endpoint to use"""

    together_api_key: str = os.environ["TOGETHER_API_KEY"]
    """Together API key"""

    temperature: float = 0.7
    """What sampling temperature to use."""

    max_tokens: int = 512
    """The maximum number of tokens to generate in the completion."""

    original_transcription: str = ""
    """Original transcription"""

    class Config:
        extra = Extra.forbid

    #@root_validator(skip_on_failure=True)
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that the API key is set."""
        api_key = get_from_dict_or_env(
            values, "together_api_key", "TOGETHER_API_KEY"
        )
        values["together_api_key"] = api_key
        return values

    @property
    def _llm_type(self) -> str:
        """Return type of LLM."""
        return "together"

    def clean_duplicates(self, transcription: str) -> str:
      transcription = transcription.strip().replace('/n/n ', """
""")
      new_transcription_aux = []
      for text in transcription.split('\n\n'):
          if text not in new_transcription_aux:
              new_transcription_aux.append(text)
      return '\n\n'.join(new_transcription_aux)

    def _call(
        self,
        prompt: str,
        **kwargs: Any,
    ) -> str:
        """Call to Together endpoint."""
        regex_transcription = r'CONTEXTO:(\n.*)+PREGUNTA'
        regex_init_transcription = r"Desde el instante [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? hasta [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? [a-zA-Z ]+ dice: ?"

        # -- Extract transcription
        together.api_key = self.together_api_key
        cleaned_prompt   = self.clean_duplicates(prompt)
        print(cleaned_prompt)
        resultado        = re.search(regex_transcription, cleaned_prompt, re.DOTALL)

        resultado        = re.sub(regex_init_transcription, "", resultado.group(1).strip()).replace('\"', '')
        resultado_alpha_num = [re.sub(r'\W+', ' ', resultado_aux).strip().lower() for resultado_aux in resultado.split('\n\n')]

        # -- Setup new transcription format, without duplicates and with its correspondent speaker
        new_transcription = []
        for transcription in self.original_transcription.split('\n\n'):
          transcription_cleaned = re.sub(regex_init_transcription, "", transcription.strip()).replace('\"', '')
          transcription_cleaned = re.sub(r'\W+', ' ', transcription_cleaned).strip().lower()
          for resultado_aux in resultado_alpha_num:
            if resultado_aux in transcription_cleaned or transcription_cleaned in resultado_aux:
              init_transcription = re.search(regex_init_transcription, transcription).group(0)
              new_transcription.append(init_transcription + '\"' + resultado_aux + '\"')
        # -- Merge with original transcription
        new_transcription = '\n\n'.join(list(set(new_transcription)))
        new_cleaned_prompt = re.sub(regex_transcription, f"""CONTEXTO:
{new_transcription}
PREGUNTA:""", cleaned_prompt, re.DOTALL)
        print(new_cleaned_prompt)
        output = together.Complete.create(new_cleaned_prompt,
                                          model=self.model,
                                          max_tokens=self.max_tokens,
                                          temperature=self.temperature,
                                          )
        text = output['output']['choices'][0]['text']
        return text

# -- Python function to setup basic features: translator, SpaCy pipeline and LLM model
@st.cache_resource
def setup_app(transcription_path, emb_model, model, _logger):
    # -- Setup enviroment and features
    translator = Translator(service_urls=['translate.googleapis.com'])
    nlp        = spacy.load('es_core_news_lg')

    _logger.info('Setup environment and features...')

    # -- Setup LLM
    together.api_key = os.environ["TOGETHER_API_KEY"]
    # List available models and descriptons
    models = together.Models.list()
    # Set llama2 7b LLM
    together.Models.start(model)
    _logger.info('Setup environment and features - FINISHED!')

    # -- Read translated transcription
    _logger.info('Loading transcription...')
    loader = TextLoader(transcription_path)
    documents = loader.load()
    # Splitting the text into chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
    texts = text_splitter.split_documents(documents)
    _logger.info('Loading transcription - FINISHED!')

    # -- Load embedding
    _logger.info('Loading embedding...')
    encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
    model_norm = HuggingFaceEmbeddings(
        model_name=emb_model,
        model_kwargs={'device': 'cpu'},
        encode_kwargs=encode_kwargs
    )
    _logger.info('Loading embedding - FINISHED!')

    # -- Create document database
    _logger.info('Creating document database...')
    # Embed and store the texts
    # Supplying a persist_directory will store the embeddings on disk
    persist_directory = 'db'
    ## Here is the nmew embeddings being used
    embedding = model_norm

    vectordb = Chroma.from_documents(documents=texts,
                                     embedding=embedding,
                                     persist_directory=persist_directory)

    # -- Make a retreiver
    retriever = vectordb.as_retriever(search_kwargs={"k": 5})
    _logger.info('Creating document database - FINISHED!')
    _logger.info('Setup finished!')
    return translator, nlp, retriever

# -- Function to get prompt template
def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger):
    new_system_prompt = b_sys + system_prompt + e_sys
    prompt_template   =  b_inst + new_system_prompt + instruction + e_inst
    _logger.info('Prompt template created: {}'.format(instruction))
    return prompt_template

# -- Function to create the chain to answer questions
@st.cache_resource
def create_llm_chain(model, _retriever, _chain_type_kwargs, _logger, transcription_path):
    _logger.info('Creating LLM chain...')
    # -- Keep original transcription
    with open(transcription_path, 'r') as f:
        formatted_transcription = f.read()
    
    llm = TogetherLLM(
        model= model,
        temperature = 0.0,
        max_tokens = 1024,
        original_transcription = formatted_transcription
    )
    qa_chain = RetrievalQA.from_chain_type(llm=llm,
                                           chain_type="stuff",
                                           retriever=_retriever,
                                           chain_type_kwargs=_chain_type_kwargs,
                                           return_source_documents=True)
    _logger.info('Creating LLM chain - FINISHED!')
    return qa_chain

# -------------------------------------------
# -- Auxiliar functions
def wrap_text_preserve_newlines(text, width=110):
    # Split the input text into lines based on newline characters
    lines = text.split('\n')

    # Wrap each line individually
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]

    # Join the wrapped lines back together using newline characters
    wrapped_text = '\n'.join(wrapped_lines)

    return wrapped_text

def process_llm_response(llm_response, nlp):
  response = llm_response['result']
  return wrap_text_preserve_newlines(response)


def time_to_seconds(time_str):
    parts = time_str.split(':')
    hours, minutes, seconds = map(float, parts)
    return int((hours * 3600) + (minutes * 60) + seconds)

# -- Extract seconds from transcription
def add_hyperlink_and_convert_to_seconds(text):
    time_pattern = r'(\d{2}:\d{2}:\d{2}(?:.\d{6})?)'
    
    def get_seconds(match):
        start_time_str, end_time_str = match[0], match[1]
        start_time_seconds = time_to_seconds(start_time_str)
        end_time_seconds   = time_to_seconds(end_time_str)
        return start_time_str, start_time_seconds, end_time_str, end_time_seconds
    start_time_str, start_time_seconds, end_time_str, end_time_seconds = get_seconds(re.findall(time_pattern, text))
    return start_time_str, start_time_seconds, end_time_str, end_time_seconds

# -- Streamlit HTML template
def typewrite(youtube_video_url, i=0):
    youtube_video_url = youtube_video_url.replace("?enablejsapi=1", "")
    margin = "{margin: 0;}"
    html = f"""
        <html>
        <style>
          p {margin}
        </style>
        <body>
          <script src="https://www.youtube.com/player_api"></script>
          <p align="center">
              <iframe id="player_{i}" src="{youtube_video_url}" width="600" height="450"></iframe>
          </p>
        </body>
        </html>
    """
    return html