File size: 6,729 Bytes
04558b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66216e0
 
04558b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66216e0
 
 
 
 
 
 
 
 
 
 
 
04558b7
 
66216e0
 
04558b7
 
 
 
 
 
 
66216e0
04558b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce1e9f
04558b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# -- Import libraries
from   langchain.prompts           import PromptTemplate
from   PIL                         import Image
from   streamlit.logger            import get_logger
from streamlit_player              import st_player
import pandas                      as pd
import streamlit                   as st
import urllib.request
import argparse
import together
import logging
import requests
import utils
import spacy
import time
import os
import re

@st.cache
def get_args():
    st.set_page_config(layout="wide")

    # -- 1. Setup arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--DEFAULT_SYSTEM_PROMPT_LINK', type=str, default="https://raw.githubusercontent.com/AlbertoUAH/Castena/main/prompts/default_system_prompt.txt", help='Valor para DEFAULT_SYSTEM_PROMPT_LINK')
    parser.add_argument('--PODCAST_URL_VIDEO_PATH', type=str, default="https://raw.githubusercontent.com/AlbertoUAH/Castena/main/data/podcast_youtube_video.csv", help='Valor para PODCAST_URL_VIDEO_PATH')
    parser.add_argument('--TRANSCRIPTION', type=str, default='worldcast_roberto_vaquero', help='Name of the trascription')
    parser.add_argument('--MODEL', type=str, default='togethercomputer/llama-2-13b-chat', help='Model name')
    parser.add_argument('--EMB_MODEL', type=str, default='sentence-transformers/paraphrase-multilingual-mpnet-base-v2', help='Embedding model name')
    os.system("python -m spacy download es_core_news_lg")

    # -- 2. Setup env and logger
    os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
    logger = get_logger(__name__)

    # -- 3. Setup constants
    args = parser.parse_args()
    return args

@st.cache
def get_podcast_data(transcription_path):
    together.api_key = os.environ["TOGETHER_API_KEY"]
    together.Models.start(MODEL)
    podcast_url_video_df = pd.read_csv(PODCAST_URL_VIDEO_PATH, sep=';')
    return podcast_url_video_df
    
def main():
    args = get_args()
    B_INST, E_INST = "[INST]", "[/INST]"
    B_SYS, E_SYS   = "<<SYS>>\n", "\n<</SYS>>\n\n"

    # -- 4. Get parameters
    PODCAST_URL_VIDEO_PATH     = args.PODCAST_URL_VIDEO_PATH
    DEFAULT_SYSTEM_PROMPT_LINK = args.DEFAULT_SYSTEM_PROMPT_LINK
    TRANSCRIPTION              = args.TRANSCRIPTION
    TRANSCRIPTION_PATH         = '{}_transcription.txt'.format(TRANSCRIPTION)
    MODEL                      = args.MODEL
    EMB_MODEL                  = args.EMB_MODEL

    podcast_url_video_df = get_podcast_data(TRANSCRIPTION_PATH)

    r = requests.get("https://raw.githubusercontent.com/AlbertoUAH/Castena/main/media/castena-animated-icon.gif", stream=True)
    icon = Image.open(r.raw)
    icon = icon.resize((100, 100))
    st.sidebar.image(icon)
    video_option = st.sidebar.selectbox(
        "Seleccione el podcast",
        list(podcast_url_video_df['podcast_name_lit'].apply(lambda x: x.replace("'", "")))
    )
    video_option_joined = '_'.join(video_option.replace(': Entrevista a ', ' ').lower().split(' ')).replace("\'", "")
    video_option_joined_path = "{}_transcription.txt".format(video_option_joined)
    youtube_video_url   = list(podcast_url_video_df[podcast_url_video_df['podcast_name'].str.contains(video_option_joined)]['youtube_video_url'])[0].replace("\'", "")

    # -- 4. Setup request for system prompt
    f = urllib.request.urlopen(DEFAULT_SYSTEM_PROMPT_LINK)
    DEFAULT_SYSTEM_PROMPT = str(f.read(), 'UTF-8')

    # -- 5. Setup app
    translator, nlp, retriever = utils.setup_app(video_option_joined_path, EMB_MODEL, MODEL, logger)


    # -- 6. Setup prompt template + llm chain
    instruction = """CONTEXTO:/n/n {context}/n

PREGUNTA: {question}

RESPUESTA: """
    prompt_template = utils.get_prompt(instruction, DEFAULT_SYSTEM_PROMPT, B_SYS, E_SYS, B_INST, E_INST, logger)

    llama_prompt = PromptTemplate(
        template=prompt_template, input_variables=["context", "question"]
    )
    chain_type_kwargs = {"prompt": llama_prompt}

    qa_chain = utils.create_llm_chain(MODEL, retriever, chain_type_kwargs, logger, video_option_joined_path)

    # ---------------------------------------------------------------------
    # -- 7. Setup Streamlit app
    st.title("[Podcast: {}]({})".format(video_option.replace("'", "").title(), youtube_video_url))

    width = 50
    side = (100 - width) / 2
    _, container, _ = st.columns([side, width, side])
    with container:
        st_player(utils.typewrite(youtube_video_url))

    if "messages" not in st.session_state:
        st.session_state.messages = []
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
    if prompt := st.chat_input("¡Pregunta lo que quieras!"):
        with st.chat_message("user"):
            st.markdown(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("assistant"):
            llm_response = qa_chain(prompt)
            llm_response = utils.process_llm_response(llm_response, nlp)
            st.markdown(llm_response)
            start_time_str_list = []; start_time_seconds_list = []; end_time_seconds_list = []
            for response in llm_response.split('\n'):
                if re.search(r'(\d{2}:\d{2}:\d{2}(.\d{6})?)', response) != None:
                    start_time_str, start_time_seconds, _, end_time_seconds = utils.add_hyperlink_and_convert_to_seconds(response)
                    start_time_str_list.append(start_time_str)
                    start_time_seconds_list.append(start_time_seconds)
                    end_time_seconds_list.append(end_time_seconds)

            if start_time_str_list:
                width = 40
                side = (100 - width) / 2
                for start_time_seconds, start_time_str, end_time_seconds in zip(start_time_seconds_list, start_time_str_list, end_time_seconds_list):
                    st.markdown("__Fragmento: " + start_time_str + "__")
                    _, container, _ = st.columns([side, width, side])
                    with container:
                        st_player(youtube_video_url.replace("?enablejsapi=1", "") + f'?start={start_time_seconds}&end={end_time_seconds}')

        st.session_state.messages.append({"role": "assistant", "content": llm_response})
# -- Sample: streamlit run app.py -- --DEFAULT_SYSTEM_PROMPT_LINK=https://raw.githubusercontent.com/AlbertoUAH/Castena/main/prompts/default_system_prompt.txt --PODCAST_URL_VIDEO_PATH=https://raw.githubusercontent.com/AlbertoUAH/Castena/main/data/podcast_youtube_video.csv --TRANSCRIPTION=worldcast_roberto_vaquero --MODEL=togethercomputer/llama-2-7b-chat --EMB_MODEL=BAAI/bge-base-en-v1.5
if __name__ == '__main__':
    main()