PodCastena / utils.py
AlbertoFH98's picture
Update utils.py
1685ddb
raw
history blame
9.92 kB
# -- Utils .py file
# -- Libraries
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.embeddings import HuggingFaceEmbeddings
from googletrans import Translator
import streamlit as st
import together
import textwrap
import spacy
import os
import re
os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
# -- LLM class
class TogetherLLM(LLM):
"""Together large language models."""
model: str = "togethercomputer/llama-2-70b-chat"
"""model endpoint to use"""
together_api_key: str = os.environ["TOGETHER_API_KEY"]
"""Together API key"""
temperature: float = 0.7
"""What sampling temperature to use."""
max_tokens: int = 512
"""The maximum number of tokens to generate in the completion."""
original_transcription: str = ""
"""Original transcription"""
class Config:
extra = Extra.forbid
#@root_validator(skip_on_failure=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the API key is set."""
api_key = get_from_dict_or_env(
values, "together_api_key", "TOGETHER_API_KEY"
)
values["together_api_key"] = api_key
return values
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "together"
def clean_duplicates(self, transcription: str) -> str:
transcription = transcription.strip().replace('/n/n ', """
""")
new_transcription_aux = []
for text in transcription.split('\n\n'):
if text not in new_transcription_aux:
is_substring = any(transcription_aux.replace('"', '').lower() in text.replace('"', '').lower()\
for transcription_aux in new_transcription_aux)
if not is_substring:
new_transcription_aux.append(text)
return '\n\n'.join(new_transcription_aux)
def _call(
self,
prompt: str,
**kwargs: Any,
) -> str:
"""Call to Together endpoint."""
regex_transcription = r'CONTEXTO:(\n.*)+PREGUNTA'
regex_init_transcription = r"Desde el instante [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? hasta [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? [a-zA-Záéíóú ]+ dice: ?"
# -- Extract transcription
together.api_key = self.together_api_key
cleaned_prompt = self.clean_duplicates(prompt)
resultado = re.search(regex_transcription, cleaned_prompt, re.DOTALL)
resultado = re.sub(regex_init_transcription, "", resultado.group(1).strip()).replace('\"', '')
resultado_alpha_num = [re.sub(r'\W+', ' ', resultado_aux).strip().lower() for resultado_aux in resultado.split('\n\n')]
# -- Setup new transcription format, without duplicates and with its correspondent speaker
new_transcription = []
for transcription in self.original_transcription.split('\n\n'):
transcription_cleaned = re.sub(regex_init_transcription, "", transcription.strip()).replace('\"', '')
transcription_cleaned = re.sub(r'\W+', ' ', transcription_cleaned).strip().lower()
for resultado_aux in resultado_alpha_num:
if resultado_aux in transcription_cleaned:
print(regex_init_transcription, " - VS - ", transcription)
init_transcription = re.search(regex_init_transcription, transcription).group(0)
new_transcription.append(init_transcription + '\"' + resultado_aux + '\"')
# -- Merge with original transcription
new_transcription = '\n\n'.join(list(set(new_transcription)))
new_cleaned_prompt = re.sub(regex_transcription, f"""CONTEXTO:
{new_transcription}
PREGUNTA:""", cleaned_prompt, re.DOTALL)
output = together.Complete.create(new_cleaned_prompt,
model=self.model,
max_tokens=self.max_tokens,
temperature=self.temperature,
)
text = output['output']['choices'][0]['text']
text = self.clean_duplicates(text)
return text
# -- Python function to setup basic features: translator, SpaCy pipeline and LLM model
@st.cache_resource
def setup_app(transcription_path, emb_model, model, _logger):
# -- Setup enviroment and features
translator = Translator(service_urls=['translate.googleapis.com'])
nlp = spacy.load('es_core_news_lg')
_logger.info('Setup environment and features...')
# -- Setup LLM
together.api_key = os.environ["TOGETHER_API_KEY"]
# List available models and descriptons
models = together.Models.list()
# Set llama2 7b LLM
together.Models.start(model)
_logger.info('Setup environment and features - FINISHED!')
# -- Read translated transcription
_logger.info('Loading transcription...')
loader = TextLoader(transcription_path)
documents = loader.load()
# Splitting the text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
_logger.info('Loading transcription - FINISHED!')
# -- Load embedding
_logger.info('Loading embedding...')
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model_norm = HuggingFaceEmbeddings(
model_name=emb_model,
model_kwargs={'device': 'cpu'},
encode_kwargs=encode_kwargs
)
_logger.info('Loading embedding - FINISHED!')
# -- Create document database
_logger.info('Creating document database...')
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
## Here is the nmew embeddings being used
embedding = model_norm
vectordb = Chroma.from_documents(documents=texts,
embedding=embedding,
persist_directory=persist_directory)
# -- Make a retreiver
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
_logger.info('Creating document database - FINISHED!')
_logger.info('Setup finished!')
return translator, nlp, retriever
# -- Function to get prompt template
def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger):
new_system_prompt = b_sys + system_prompt + e_sys
prompt_template = b_inst + new_system_prompt + instruction + e_inst
_logger.info('Prompt template created: {}'.format(instruction))
return prompt_template
# -- Function to create the chain to answer questions
@st.cache_resource
def create_llm_chain(model, _retriever, _chain_type_kwargs, _logger, transcription_path):
_logger.info('Creating LLM chain...')
# -- Keep original transcription
with open(transcription_path, 'r') as f:
formatted_transcription = f.read()
llm = TogetherLLM(
model= model,
temperature = 0.0,
max_tokens = 1024,
original_transcription = formatted_transcription
)
qa_chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=_retriever,
chain_type_kwargs=_chain_type_kwargs,
return_source_documents=True)
_logger.info('Creating LLM chain - FINISHED!')
return qa_chain
# -------------------------------------------
# -- Auxiliar functions
def wrap_text_preserve_newlines(text, width=110):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response, nlp):
response = llm_response['result']
return wrap_text_preserve_newlines(response)
def time_to_seconds(time_str):
parts = time_str.split(':')
hours, minutes, seconds = map(float, parts)
return int((hours * 3600) + (minutes * 60) + seconds)
# -- Extract seconds from transcription
def add_hyperlink_and_convert_to_seconds(text):
time_pattern = r'(\d{2}:\d{2}:\d{2}(?:.\d{6})?)'
def get_seconds(match):
start_time_str, end_time_str = match[0], match[1]
start_time_seconds = time_to_seconds(start_time_str)
end_time_seconds = time_to_seconds(end_time_str)
return start_time_str, start_time_seconds, end_time_str, end_time_seconds
start_time_str, start_time_seconds, end_time_str, end_time_seconds = get_seconds(re.findall(time_pattern, text))
return start_time_str, start_time_seconds, end_time_str, end_time_seconds
# -- Streamlit HTML template
def typewrite(youtube_video_url, i=0):
youtube_video_url = youtube_video_url.replace("?enablejsapi=1", "")
margin = "{margin: 0;}"
html = f"""
<html>
<style>
p {margin}
</style>
<body>
<script src="https://www.youtube.com/player_api"></script>
<p align="center">
<iframe id="player_{i}" src="{youtube_video_url}" width="600" height="450"></iframe>
</p>
</body>
</html>
"""
return html