PodCastena / utils.py
AlbertoFH98's picture
Update utils.py
d1707ec
raw
history blame
19.7 kB
# -- Utils .py file
# -- Libraries
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain_core.runnables import RunnablePassthrough
from langchain.llms.base import LLM
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.schema import StrOutputParser
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.chains import RetrievalQA, MapReduceDocumentsChain, ReduceDocumentsChain
from langchain.document_loaders import TextLoader
from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
from langchain.chains import LLMChain
from langchain.evaluation import StringEvaluator
from typing import Any, Optional
from langsmith.client import Client
from langchain.smith import RunEvalConfig, run_on_dataset
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
import streamlit as st
import together
import textwrap
import getpass
import spacy
import os
import re
#os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
#os.environ["OPENAI_API_KEY"] = "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"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
client = Client()
# -- LLM class
class TogetherLLM(LLM):
"""Together large language models."""
model: str = "togethercomputer/llama-2-70b-chat"
"""model endpoint to use"""
together_api_key: str = os.environ["TOGETHER_API_KEY"]
"""Together API key"""
temperature: float = 0.7
"""What sampling temperature to use."""
max_tokens: int = 512
"""The maximum number of tokens to generate in the completion."""
original_transcription: str = ""
"""Original transcription"""
class Config:
extra = Extra.forbid
#@root_validator(skip_on_failure=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the API key is set."""
api_key = get_from_dict_or_env(
values, "together_api_key", "TOGETHER_API_KEY"
)
values["together_api_key"] = api_key
return values
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "together"
def clean_duplicates(self, transcription: str) -> str:
transcription = transcription.strip().replace('/n/n ', """
""")
new_transcription_aux = []
for text in transcription.split('\n\n'):
if text not in new_transcription_aux:
is_substring = any(transcription_aux.replace('"', '').lower() in text.replace('"', '').lower()\
for transcription_aux in new_transcription_aux)
if not is_substring:
new_transcription_aux.append(text)
return '\n\n'.join(new_transcription_aux)
def _call(
self,
prompt: str,
**kwargs: Any,
) -> str:
"""Call to Together endpoint."""
regex_transcription = r'CONTEXTO:(\n.*)+PREGUNTA'
regex_init_transcription = r"Desde el instante [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? hasta [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? [a-zA-Záéíóú ]+ dice: ?"
# -- Extract transcription
together.api_key = self.together_api_key
cleaned_prompt = self.clean_duplicates(prompt)
resultado = re.search(regex_transcription, cleaned_prompt, re.DOTALL)
resultado = re.sub(regex_init_transcription, "", resultado.group(1).strip()).replace('\"', '')
resultado_alpha_num = [re.sub(r'\W+', ' ', resultado_aux).strip().lower() for resultado_aux in resultado.split('\n\n')]
# -- Setup new transcription format, without duplicates and with its correspondent speaker
new_transcription = []
for transcription in self.original_transcription.split('\n\n'):
transcription_cleaned = re.sub(regex_init_transcription, "", transcription.strip()).replace('\"', '')
transcription_cleaned = re.sub(r'\W+', ' ', transcription_cleaned).strip().lower()
for resultado_aux in resultado_alpha_num:
if resultado_aux in transcription_cleaned:
init_transcription = re.search(regex_init_transcription, transcription).group(0)
new_transcription.append(init_transcription + '\"' + resultado_aux + '\"')
# -- Merge with original transcription
new_transcription = '\n\n'.join(list(set(new_transcription)))
new_cleaned_prompt = re.sub(regex_transcription, f"""CONTEXTO:
{new_transcription}
PREGUNTA:""", cleaned_prompt, re.DOTALL)
print(new_cleaned_prompt)
output = together.Complete.create(new_cleaned_prompt,
model=self.model,
max_tokens=self.max_tokens,
temperature=self.temperature,
)
text = output['output']['choices'][0]['text']
text = self.clean_duplicates(text)
return text
# -- Langchain evaluator
class RelevanceEvaluator(StringEvaluator):
"""An LLM-based relevance evaluator."""
def __init__(self):
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
template = """En una escala del 0 al 100, ¿Como de relevante es la siguiente salida con respecto a la siguiente entrada?
--------
ENTRADA: {input}
--------
SALIDA: {prediction}
--------
Razona paso a paso porqué el score que has elegido es apropiado y despues muestra la puntuacion al final."""
self.eval_chain = LLMChain.from_string(llm=llm, template=template)
@property
def requires_input(self) -> bool:
return True
@property
def requires_reference(self) -> bool:
return False
@property
def evaluation_name(self) -> str:
return "scored_relevance"
def _evaluate_strings(
self,
prediction: str,
input: Optional[str] = None,
reference: Optional[str] = None,
**kwargs: Any
) -> dict:
evaluator_result = self.eval_chain(
dict(input=input, prediction=prediction), **kwargs
)
reasoning, score = evaluator_result["text"].split("\n", maxsplit=1)
score = re.search(r"\d+", score).group(0)
if score is not None:
score = float(score.strip()) / 100.0
return {"score": score, "reasoning": reasoning.strip()}
# -- Get GPT response
def get_gpt_response(transcription_path, query, logger):
template = """Eres un asistente. Su misión es proporcionar respuestas precisas a preguntas relacionadas con la transcripción de una entrevista de YouTube.
No saludes en tu respuesta. No repita la pregunta en su respuesta. Sea conciso y omita las exenciones de responsabilidad o los mensajes predeterminados.
Solo responda la pregunta, no agregue texto adicional. No des tu opinión personal ni tu conclusión personal. No haga conjeturas ni suposiciones.
Si no sabe la respuesta de la pregunta o el contexto está vacío, responda cortésmente por qué no sabe la respuesta. Por favor no comparta información falsa.
{context}
Pregunta: {question}
Respuesta:"""
rag_prompt_custom = PromptTemplate.from_template(template)
loader = TextLoader(transcription_path)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| rag_prompt_custom
| llm
| StrOutputParser()
)
llm_output = rag_chain.invoke(query)
# dataset = client.create_dataset(dataset_name="Sample LLM dataset", description="A dataset with LLM inputs and outputs", data_type="llm")
# client.create_example(
# inputs={"input": query},
# outputs={"output": llm_output},
# dataset_id=dataset.id,
# )
# -- Run custom evaluator
# evaluation_config = RunEvalConfig(
# custom_evaluators = [RelevanceEvaluator()],
# )
# eval_output = run_on_dataset(
# dataset_name="Sample LLM dataset",
# llm_or_chain_factory=rag_chain,
# evaluation=evaluation_config,
# client=client,
# )
# logger.info("Eval output!!!!")
# logger.info(eval_output)
return llm_output
# -- Text summarisation with OpenAI (map-reduce technique)
def summarise_doc(transcription_path, model_name, model=None):
if model_name == 'gpt':
llm = ChatOpenAI(temperature=0, max_tokens=1024)
# -- Map
loader = TextLoader(transcription_path)
docs = loader.load()
map_template = """Lo siguiente es listado de fragmentos de una conversacion:
{docs}
En base a este listado, por favor identifica los temas/topics principales.
Respuesta:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# -- Reduce
reduce_template = """A continuacion se muestra un conjunto de resumenes:
{docs}
Usalos para crear un unico resumen consolidado de todos los temas/topics principales.
Respuesta:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
# Run chain
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# Combines and iteravely reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=combine_documents_chain,
# The maximum number of tokens to group documents into.
token_max=3000,
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
)
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=3000, chunk_overlap=0
)
split_docs = text_splitter.split_documents(docs)
doc_summary = map_reduce_chain.run(split_docs)
else:
# -- Keep original transcription
with open(transcription_path, 'r') as f:
docs = f.read()
llm = TogetherLLM(
model= model,
temperature = 0.0,
max_tokens = 1024,
original_transcription = docs
)
# Map
map_template = """Lo siguiente es un extracto de una conversación entre dos hablantes en español.
{docs}
Por favor resuma la conversación en español.
Resumen:"""
map_prompt = PromptTemplate(template=map_template, input_variables=["docs"])
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# Reduce
reduce_template = """Lo siguiente es una lista de resumenes en español:
{doc_summaries}
Tómelos y descríbalos en un resumen final consolidado en español. Además, enumera los temas principales de la conversación en español.
Resumen:"""
reduce_prompt = PromptTemplate(template=reduce_template, input_variables=["doc_summaries"])
# Run chain
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="doc_summaries"
)
# Combines and iteravely reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=combine_documents_chain,
# The maximum number of tokens to group documents into.
verbose=True,
token_max=1024
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
verbose=True
)
text_splitter = CharacterTextSplitter(
separator = "\n\n",
chunk_size = 2000,
chunk_overlap = 50,
length_function = len,
is_separator_regex = True,
)
split_docs = text_splitter.create_documents([docs])
return doc_summary
# -- Python function to setup basic features: SpaCy pipeline and LLM model
@st.cache_resource
def setup_app(transcription_path, emb_model, model, _logger):
# -- Setup enviroment and features
nlp = spacy.load('es_core_news_lg')
_logger.info('Setup environment and features...')
# -- Setup LLM
together.api_key = os.environ["TOGETHER_API_KEY"]
# List available models and descriptons
models = together.Models.list()
# Set llama2 7b LLM
#together.Models.start(model)
_logger.info('Setup environment and features - FINISHED!')
# -- Read translated transcription
_logger.info('Loading transcription...')
loader = TextLoader(transcription_path)
documents = loader.load()
# Splitting the text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
_logger.info('Loading transcription - FINISHED!')
# -- Load embedding
_logger.info('Loading embedding...')
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model_norm = HuggingFaceEmbeddings(
model_name=emb_model,
model_kwargs={'device': 'cpu'},
encode_kwargs=encode_kwargs
)
_logger.info('Loading embedding - FINISHED!')
# -- Create document database
_logger.info('Creating document database...')
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
## Here is the nmew embeddings being used
embedding = model_norm
vectordb = Chroma.from_documents(documents=texts,
embedding=embedding,
persist_directory=persist_directory)
# -- Make a retreiver
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
_logger.info('Creating document database - FINISHED!')
_logger.info('Setup finished!')
return nlp, retriever
# -- Function to get prompt template
def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger):
new_system_prompt = b_sys + system_prompt + e_sys
prompt_template = b_inst + new_system_prompt + instruction + e_inst
_logger.info('Prompt template created: {}'.format(instruction))
return prompt_template
# -- Function to create the chain to answer questions
@st.cache_resource
def create_llm_chain(model, _retriever, _chain_type_kwargs, _logger, transcription_path):
_logger.info('Creating LLM chain...')
# -- Keep original transcription
with open(transcription_path, 'r') as f:
formatted_transcription = f.read()
llm = TogetherLLM(
model= model,
temperature = 0.0,
max_tokens = 1024,
original_transcription = formatted_transcription
)
qa_chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=_retriever,
chain_type_kwargs=_chain_type_kwargs,
return_source_documents=True)
_logger.info('Creating LLM chain - FINISHED!')
return qa_chain
# -------------------------------------------
# -- Auxiliar functions
def wrap_text_preserve_newlines(text, width=110):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
return wrap_text_preserve_newlines(llm_response)
def time_to_seconds(time_str):
parts = time_str.split(':')
hours, minutes, seconds = map(float, parts)
return int((hours * 3600) + (minutes * 60) + seconds)
# -- Extract seconds from transcription
def add_hyperlink_and_convert_to_seconds(text):
time_pattern = r'(\d{2}:\d{2}:\d{2}(?:.\d{6})?)'
def get_seconds(match):
if len(match) == 2:
start_time_str, end_time_str = match[0], match[1]
else:
start_time_str = match[0]
end_time_str = re.findall(r"Desde el instante {} hasta {}".format(start_time_str, time_pattern))[0].split('hasta ')[-1]
start_time_seconds = time_to_seconds(start_time_str)
end_time_seconds = time_to_seconds(end_time_str)
return start_time_str, start_time_seconds, end_time_str, end_time_seconds
start_time_str, start_time_seconds, end_time_str, end_time_seconds = get_seconds(re.findall(time_pattern, text))
return start_time_str, start_time_seconds, end_time_str, end_time_seconds
# -- Streamlit HTML template
def typewrite(youtube_video_url, i=0):
youtube_video_url = youtube_video_url.replace("?enablejsapi=1", "")
margin = "{margin: 0;}"
html = f"""
<html>
<style>
p {margin}
</style>
<body>
<script src="https://www.youtube.com/player_api"></script>
<p align="center">
<iframe id="player_{i}" src="{youtube_video_url}" width="600" height="450"></iframe>
</p>
</body>
</html>
"""
return html