AlbertoFH98 commited on
Commit
11097c4
·
verified ·
1 Parent(s): a789fa9

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +25 -21
utils.py CHANGED
@@ -2,6 +2,7 @@
2
  # -- Libraries
3
  from typing import Any, Dict, List, Mapping, Optional
4
  from pydantic import Extra, Field, root_validator
 
5
  from langchain_core.runnables import RunnablePassthrough
6
  from langchain.llms.base import LLM
7
  from langchain.chat_models import ChatOpenAI
@@ -199,29 +200,32 @@ def get_gpt_response(transcription_path, query, logger):
199
  | StrOutputParser()
200
  )
201
  llm_output = rag_chain.invoke(query)
202
- # dataset = client.create_dataset(dataset_name="Sample LLM dataset", description="A dataset with LLM inputs and outputs", data_type="llm")
203
-
204
- # client.create_example(
205
- # inputs={"input": query},
206
- # outputs={"output": llm_output},
207
- # dataset_id=dataset.id,
208
- # )
209
-
210
- # -- Run custom evaluator
211
- # evaluation_config = RunEvalConfig(
212
- # custom_evaluators = [RelevanceEvaluator()],
213
- # )
214
- # eval_output = run_on_dataset(
215
- # dataset_name="Sample LLM dataset",
216
- # llm_or_chain_factory=rag_chain,
217
- # evaluation=evaluation_config,
218
- # client=client,
219
- # )
220
- # logger.info("Eval output!!!!")
221
- # logger.info(eval_output)
222
-
223
  return llm_output
224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
  # -- Text summarisation with OpenAI (map-reduce technique)
226
  def summarise_doc(transcription_path, model_name, model=None):
227
  if model_name == 'gpt':
 
2
  # -- Libraries
3
  from typing import Any, Dict, List, Mapping, Optional
4
  from pydantic import Extra, Field, root_validator
5
+ from langchain_community.vectorstores import FAISS
6
  from langchain_core.runnables import RunnablePassthrough
7
  from langchain.llms.base import LLM
8
  from langchain.chat_models import ChatOpenAI
 
200
  | StrOutputParser()
201
  )
202
  llm_output = rag_chain.invoke(query)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  return llm_output
204
 
205
+ def get_character_info_gpt(text, character):
206
+ vectorstore = FAISS.from_texts(
207
+ [text], embedding=OpenAIEmbeddings()
208
+ )
209
+ retriever = vectorstore.as_retriever()
210
+
211
+ template = """Responde a la siguiente pregunta basandote unicamente en el siguiente contexto:
212
+ {context}
213
+
214
+ Pregunta: {question}
215
+ """
216
+ prompt = ChatPromptTemplate.from_template(template)
217
+
218
+ model = ChatOpenAI()
219
+
220
+ chain = (
221
+ {"context": retriever, "question": RunnablePassthrough()}
222
+ | prompt
223
+ | model
224
+ | StrOutputParser()
225
+ )
226
+ return chain.invoke("¿Quien es {}?".format(character))
227
+
228
+
229
  # -- Text summarisation with OpenAI (map-reduce technique)
230
  def summarise_doc(transcription_path, model_name, model=None):
231
  if model_name == 'gpt':