AlbertoFH98 commited on
Commit
39e3dea
·
1 Parent(s): 120298c

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +2 -4
utils.py CHANGED
@@ -13,7 +13,6 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
13
  from langchain.chains import RetrievalQA
14
  from langchain.document_loaders import TextLoader
15
  from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
16
- from googletrans import Translator
17
  import streamlit as st
18
  import together
19
  import textwrap
@@ -147,11 +146,10 @@ def get_gpt_response(query):
147
  )
148
  return rag_chain.invoke(query)
149
 
150
- # -- Python function to setup basic features: translator, SpaCy pipeline and LLM model
151
  @st.cache_resource
152
  def setup_app(transcription_path, emb_model, model, _logger):
153
  # -- Setup enviroment and features
154
- translator = Translator(service_urls=['translate.googleapis.com'])
155
  nlp = spacy.load('es_core_news_lg')
156
 
157
  _logger.info('Setup environment and features...')
@@ -199,7 +197,7 @@ def setup_app(transcription_path, emb_model, model, _logger):
199
  retriever = vectordb.as_retriever(search_kwargs={"k": 5})
200
  _logger.info('Creating document database - FINISHED!')
201
  _logger.info('Setup finished!')
202
- return translator, nlp, retriever
203
 
204
  # -- Function to get prompt template
205
  def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger):
 
13
  from langchain.chains import RetrievalQA
14
  from langchain.document_loaders import TextLoader
15
  from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
 
16
  import streamlit as st
17
  import together
18
  import textwrap
 
146
  )
147
  return rag_chain.invoke(query)
148
 
149
+ # -- Python function to setup basic features: SpaCy pipeline and LLM model
150
  @st.cache_resource
151
  def setup_app(transcription_path, emb_model, model, _logger):
152
  # -- Setup enviroment and features
 
153
  nlp = spacy.load('es_core_news_lg')
154
 
155
  _logger.info('Setup environment and features...')
 
197
  retriever = vectordb.as_retriever(search_kwargs={"k": 5})
198
  _logger.info('Creating document database - FINISHED!')
199
  _logger.info('Setup finished!')
200
+ return nlp, retriever
201
 
202
  # -- Function to get prompt template
203
  def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger):