Spaces:
Runtime error
Runtime error
AlbertoFH98
commited on
Commit
·
3a8d578
1
Parent(s):
eb07d82
Update utils.py
Browse files
utils.py
CHANGED
@@ -2,22 +2,30 @@
|
|
2 |
# -- Libraries
|
3 |
from typing import Any, Dict, List, Mapping, Optional
|
4 |
from pydantic import Extra, Field, root_validator
|
|
|
5 |
from langchain.llms.base import LLM
|
|
|
|
|
|
|
6 |
from langchain.utils import get_from_dict_or_env
|
7 |
from langchain.vectorstores import Chroma
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain.document_loaders import TextLoader
|
11 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
from googletrans import Translator
|
13 |
import streamlit as st
|
14 |
import together
|
15 |
import textwrap
|
|
|
16 |
import spacy
|
17 |
import os
|
18 |
import re
|
19 |
|
20 |
os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
|
|
|
|
|
|
|
21 |
|
22 |
# -- LLM class
|
23 |
class TogetherLLM(LLM):
|
@@ -108,6 +116,38 @@ PREGUNTA:""", cleaned_prompt, re.DOTALL)
|
|
108 |
text = self.clean_duplicates(text)
|
109 |
return text, new_cleaned_prompt
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
# -- Python function to setup basic features: translator, SpaCy pipeline and LLM model
|
112 |
@st.cache_resource
|
113 |
def setup_app(transcription_path, emb_model, model, _logger):
|
|
|
2 |
# -- Libraries
|
3 |
from typing import Any, Dict, List, Mapping, Optional
|
4 |
from pydantic import Extra, Field, root_validator
|
5 |
+
from langchain_core.runnables import RunnablePassthrough
|
6 |
from langchain.llms.base import LLM
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain.schema import StrOutputParser
|
10 |
from langchain.utils import get_from_dict_or_env
|
11 |
from langchain.vectorstores import Chroma
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.chains import RetrievalQA
|
14 |
from langchain.document_loaders import TextLoader
|
15 |
+
from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
|
16 |
from googletrans import Translator
|
17 |
import streamlit as st
|
18 |
import together
|
19 |
import textwrap
|
20 |
+
import getpass
|
21 |
import spacy
|
22 |
import os
|
23 |
import re
|
24 |
|
25 |
os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
|
26 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
27 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
28 |
+
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
|
29 |
|
30 |
# -- LLM class
|
31 |
class TogetherLLM(LLM):
|
|
|
116 |
text = self.clean_duplicates(text)
|
117 |
return text, new_cleaned_prompt
|
118 |
|
119 |
+
# -- Get GPT response
|
120 |
+
def get_gpt_response(query):
|
121 |
+
template = """Eres un asistente. Su misión es proporcionar respuestas precisas a preguntas relacionadas con la transcripción de una entrevista de YouTube.
|
122 |
+
No saludes en tu respuesta. No repita la pregunta en su respuesta. Sea conciso y omita las exenciones de responsabilidad o los mensajes predeterminados.
|
123 |
+
Solo responda la pregunta, no agregue texto adicional. No des tu opinión personal ni tu conclusión personal. No haga conjeturas ni suposiciones.
|
124 |
+
Si no sabe la respuesta de la pregunta o el contexto está vacío, responda cortésmente por qué no sabe la respuesta. Por favor no comparta información falsa.
|
125 |
+
{context}
|
126 |
+
Pregunta: {question}
|
127 |
+
Respuesta:"""
|
128 |
+
|
129 |
+
rag_prompt_custom = PromptTemplate.from_template(template)
|
130 |
+
docs = loader.load()
|
131 |
+
|
132 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
133 |
+
splits = text_splitter.split_documents(docs)
|
134 |
+
|
135 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
|
136 |
+
retriever = vectorstore.as_retriever()
|
137 |
+
|
138 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
139 |
+
|
140 |
+
def format_docs(docs):
|
141 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
142 |
+
|
143 |
+
rag_chain = (
|
144 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
145 |
+
| rag_prompt_custom
|
146 |
+
| llm
|
147 |
+
| StrOutputParser()
|
148 |
+
)
|
149 |
+
return rag_chain.invoke(query)
|
150 |
+
|
151 |
# -- Python function to setup basic features: translator, SpaCy pipeline and LLM model
|
152 |
@st.cache_resource
|
153 |
def setup_app(transcription_path, emb_model, model, _logger):
|