Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,10 +13,13 @@ import random
|
|
13 |
import time
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
|
|
16 |
import safetensors.torch
|
17 |
from safetensors.torch import load_file
|
18 |
-
from transformers import CLIPModel, CLIPProcessor, CLIPConfig
|
19 |
import gc
|
|
|
|
|
20 |
|
21 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
22 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
@@ -28,23 +31,15 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|
28 |
|
29 |
pipe = FluxPipeline.from_pretrained("AlekseyCalvin/HistoricColorSoonr_v2_FluxSchnell_Diffusers", ignore_mismatched_sizes=True, torch_dtype=torch.bfloat16)
|
30 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
31 |
-
clipmodel = 'norm' # 'norm', 'long' (my fine-tunes) - 'oai', 'orgL' (OpenAI / BeichenZhang original)
|
32 |
-
|
33 |
-
if clipmodel == "long":
|
34 |
-
model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
|
35 |
-
config = CLIPConfig.from_pretrained(model_id)
|
36 |
-
maxtokens = 77
|
37 |
-
if clipmodel == "norm":
|
38 |
-
model_id = "zer0int/CLIP-GmP-ViT-L-14"
|
39 |
-
config = CLIPConfig.from_pretrained(model_id)
|
40 |
-
maxtokens = 77
|
41 |
-
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
|
42 |
-
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
|
43 |
-
config.text_config.max_position_embeddings = 77
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
pipe.tokenizer = clip_processor.tokenizer
|
46 |
pipe.text_encoder = clip_model.text_model
|
47 |
-
pipe.tokenizer_max_length =
|
48 |
pipe.text_encoder.dtype = torch.bfloat16
|
49 |
|
50 |
|
@@ -91,7 +86,7 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
91 |
height,
|
92 |
)
|
93 |
|
94 |
-
@spaces.GPU(
|
95 |
|
96 |
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
97 |
pipe.to("cuda")
|
|
|
13 |
import time
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
16 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
17 |
import safetensors.torch
|
18 |
from safetensors.torch import load_file
|
19 |
+
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
|
20 |
import gc
|
21 |
+
from gradio_client import Client
|
22 |
+
Client = Client("AlekseyCalvin/soonfactory4", hf_token=os.getenv("HF_TOKEN"))
|
23 |
|
24 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
25 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
|
|
31 |
|
32 |
pipe = FluxPipeline.from_pretrained("AlekseyCalvin/HistoricColorSoonr_v2_FluxSchnell_Diffusers", ignore_mismatched_sizes=True, torch_dtype=torch.bfloat16)
|
33 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
|
36 |
+
config = CLIPConfig.from_pretrained(model_id)
|
37 |
+
config.text_config.max_position_embeddings = 248
|
38 |
+
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True)
|
39 |
+
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248)
|
40 |
pipe.tokenizer = clip_processor.tokenizer
|
41 |
pipe.text_encoder = clip_model.text_model
|
42 |
+
pipe.tokenizer_max_length = 248
|
43 |
pipe.text_encoder.dtype = torch.bfloat16
|
44 |
|
45 |
|
|
|
86 |
height,
|
87 |
)
|
88 |
|
89 |
+
@spaces.GPU()
|
90 |
|
91 |
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
92 |
pipe.to("cuda")
|