Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,55 +4,27 @@ import logging
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import spaces
|
7 |
-
from diffusers import DiffusionPipeline
|
8 |
import copy
|
9 |
import random
|
10 |
import time
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
-
from accelerate.utils import set_module_tensor_to_device, compute_module_sizes
|
13 |
-
from accelerate import init_empty_weights
|
14 |
-
from convert_nf4_flux import replace_with_bnb_linear, create_quantized_param, check_quantized_param
|
15 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
16 |
import safetensors.torch
|
17 |
import gc
|
18 |
-
import torch
|
19 |
-
|
20 |
-
# Set dtype and check for float8 support
|
21 |
-
dtype = torch.bfloat16
|
22 |
-
is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn")
|
23 |
-
|
24 |
-
ckpt_path = hf_hub_download("ABDALLALSWAITI/Maxwell", filename="diffusion_pytorch_model.safetensors")
|
25 |
-
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
# Load the state dict into the quantized model
|
33 |
-
for param_name, param in original_state_dict.items():
|
34 |
-
if param_name not in expected_state_dict_keys:
|
35 |
-
continue
|
36 |
-
|
37 |
-
is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn
|
38 |
-
if torch.is_floating_point(param) and not is_param_float8_e4m3fn:
|
39 |
-
param = param.to(dtype)
|
40 |
-
|
41 |
-
if not check_quantized_param(model, param_name):
|
42 |
-
set_module_tensor_to_device(model, param_name, device=0, value=param)
|
43 |
-
else:
|
44 |
-
create_quantized_param(
|
45 |
-
model, param, param_name, target_device=0, state_dict=original_state_dict, pre_quantized=True
|
46 |
-
)
|
47 |
|
48 |
-
|
49 |
-
del original_state_dict
|
50 |
-
gc.collect()
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
pipe = FluxPipeline.from_pretrained("black-forest-labs/flux.1-dev", transformer=model, torch_dtype=dtype)
|
56 |
pipe.enable_model_cpu_offload()
|
57 |
|
58 |
# Load LoRAs from JSON file
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import spaces
|
|
|
7 |
import copy
|
8 |
import random
|
9 |
import time
|
10 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
11 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
12 |
import safetensors.torch
|
13 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
16 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
17 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
18 |
+
os.environ["HF_HOME"] = cache_path
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
22 |
|
23 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
24 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
25 |
+
pipe.fuse_lora(lora_scale=0.125)
|
26 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
27 |
|
|
|
28 |
pipe.enable_model_cpu_offload()
|
29 |
|
30 |
# Load LoRAs from JSON file
|