Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras.datasets import imdb | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import numpy as np | |
word_index = imdb.get_word_index() | |
maximo_num_palabras = 20000 | |
def reviewnueva(review, word_index, maxmimo_num_palabras): | |
sequence = [] | |
for word in review.split(): | |
index = word_index.get(word.lower(),0) | |
if index < maximo_num_palabras: | |
sequence.append(index) | |
return sequence | |
model = tf.keras.models.load_model('opiniones.h5') | |
def predict_sentiento(review): | |
sequence = reviewnueva(review, word_index) | |
sentimiento = model.predict(nuevareviewpad) | |
if(sentimiento[0][0] > 0.5): | |
print("El sentimiento es positiva") | |
else: | |
print("El sentimiento es negativa") | |
return sentimiento | |
st.title("Ingrese una review para poder calificarla como positiva o negativa") | |
review = st.text_area("Ingrese reseña aquí ", height=200) | |
if st.button("Predecir sentimiento"): | |
if review: | |
sentimiento = predict_sentiento(review) | |
st.write(f"El sentimiento es: {sentimiento}") | |
else: | |
st.write(f"Ingrese una review.") |