Spaces:
Runtime error
Runtime error
File size: 6,788 Bytes
d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 d6d7239 c8e6ec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
from typing import Tuple, Optional, Dict, Any, List
from dataclasses import dataclass
import random
from datetime import datetime, timedelta
import os
from qwen_agent.agents import Assistant
from qwen_agent.gui.web_ui import WebUI
@dataclass
class PatientMetadata:
age: int
smoking_status: str
family_history: bool
menopause_status: str
previous_mammogram: bool
breast_density: str
hormone_therapy: bool
@dataclass
class AnalysisResult:
has_tumor: bool
tumor_size: str
confidence: float
metadata: PatientMetadata
class BreastCancerAgent(Assistant):
def __init__(self):
super().__init__(
llm={
'model': os.environ.get("MODELNAME", "qwen-vl-chat"),
'generate_cfg': {
'max_input_tokens': 32768,
'max_retries': 10,
'temperature': float(os.environ.get("T", 0.001)),
'repetition_penalty': float(os.environ.get("R", 1.0)),
"top_k": int(os.environ.get("K", 20)),
"top_p": float(os.environ.get("P", 0.8)),
}
},
name='Breast Cancer Analyzer',
description='Medical imaging analysis system specializing in breast cancer detection and reporting.',
system_message='You are an expert medical imaging system analyzing breast cancer scans. Provide clear, accurate, and professional analysis.'
)
print("Initializing system...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {self.device}")
self._init_vision_models()
print("Initialization complete!")
def _init_vision_models(self) -> None:
"""Initialize vision models for abnormality detection and size measurement."""
print("Loading detection models...")
self.tumor_detector = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_classifier"
).to(self.device).eval()
self.tumor_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
self.size_detector = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_radius_detection_finetuned"
).to(self.device).eval()
self.size_processor = AutoImageProcessor.from_pretrained(
"SIATCN/vit_tumor_radius_detection_finetuned"
)
def _process_image(self, image: Image.Image) -> Image.Image:
"""Process input image for model consumption."""
if image.mode != 'RGB':
image = image.convert('RGB')
return image.resize((224, 224))
@torch.no_grad()
def _analyze_image(self, image: Image.Image) -> AnalysisResult:
"""Perform abnormality detection and size measurement."""
metadata = self._generate_synthetic_metadata()
tumor_inputs = self.tumor_processor(image, return_tensors="pt").to(self.device)
tumor_outputs = self.tumor_detector(**tumor_inputs)
tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu()
has_tumor = tumor_probs[1] > tumor_probs[0]
confidence = float(tumor_probs[1] if has_tumor else tumor_probs[0])
size_inputs = self.size_processor(image, return_tensors="pt").to(self.device)
size_outputs = self.size_detector(**size_inputs)
size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu()
sizes = ["no-tumor", "0.5", "1.0", "1.5"]
tumor_size = sizes[size_pred.argmax().item()]
return AnalysisResult(has_tumor, tumor_size, confidence, metadata)
def _generate_synthetic_metadata(self) -> PatientMetadata:
"""Generate realistic patient metadata for breast cancer screening."""
age = random.randint(40, 75)
smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
family_history = random.choice([True, False])
menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
previous_mammogram = random.choice([True, False])
breast_density = random.choice(["A: Almost entirely fatty",
"B: Scattered fibroglandular",
"C: Heterogeneously dense",
"D: Extremely dense"])
hormone_therapy = random.choice([True, False])
return PatientMetadata(
age=age,
smoking_status=smoking_status,
family_history=family_history,
menopause_status=menopause_status,
previous_mammogram=previous_mammogram,
breast_density=breast_density,
hormone_therapy=hormone_therapy
)
def run(self, image_path: str) -> str:
"""Run analysis on an image."""
try:
image = Image.open(image_path)
processed_image = self._process_image(image)
analysis = self._analyze_image(processed_image)
report = f"""MICROWAVE IMAGING ANALYSIS:
• Detection: {'Positive' if analysis.has_tumor else 'Negative'}
• Size: {analysis.tumor_size} cm
PATIENT INFO:
• Age: {analysis.metadata.age} years
• Risk Factors: {', '.join([
'family history' if analysis.metadata.family_history else '',
analysis.metadata.smoking_status.lower(),
'hormone therapy' if analysis.metadata.hormone_therapy else '',
]).strip(', ')}
REPORT:
{'Abnormal scan showing potential mass.' if analysis.has_tumor else 'Normal scan with no significant findings.'}
Confidence level: {analysis.confidence:.1%}
RECOMMENDATION:
{('Immediate follow-up imaging recommended.' if analysis.tumor_size in ['1.0', '1.5'] else 'Follow-up imaging in 6 months recommended.') if analysis.has_tumor else 'Continue routine screening per protocol.'}"""
return report
except Exception as e:
return f"Error during analysis: {str(e)}"
def run_interface():
"""Create and run the WebUI interface."""
agent = BreastCancerAgent()
chatbot_config = {
'user.name': 'Medical Staff',
'input.placeholder': 'Upload a breast microwave image for analysis...',
'prompt.suggestions': [
{'text': 'Can you analyze this mammogram?'},
{'text': 'What should I look for in the results?'},
{'text': 'How reliable is the detection?'}
]
}
app = WebUI(agent, chatbot_config=chatbot_config)
app.run(share=True, concurrency_limit=80)
if __name__ == "__main__":
print("Starting application...")
run_interface() |