File size: 8,724 Bytes
ac8852f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
from typing import Tuple, Optional, Dict, Any
from dataclasses import dataclass
import random
from datetime import datetime, timedelta

@dataclass
class PatientMetadata:
    age: int
    smoking_status: str
    family_history: bool
    menopause_status: str
    previous_mammogram: bool
    breast_density: str
    hormone_therapy: bool

@dataclass
class AnalysisResult:
    has_tumor: bool
    tumor_size: str
    confidence: float
    metadata: PatientMetadata

class BreastSinogramAnalyzer:
    def __init__(self):
        """Initialize the analyzer with required models."""
        print("Initializing system...")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Using device: {self.device}")
        
        self._init_vision_models()
        self._init_llm()
        print("Initialization complete!")

    def _init_vision_models(self) -> None:
        """Initialize vision models for abnormality detection and size measurement."""
        print("Loading detection models...")
        self.tumor_detector = AutoModelForImageClassification.from_pretrained(
            "SIATCN/vit_tumor_classifier"
        ).to(self.device).eval()
        self.tumor_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
        
        self.size_detector = AutoModelForImageClassification.from_pretrained(
            "SIATCN/vit_tumor_radius_detection_finetuned"
        ).to(self.device).eval()
        self.size_processor = AutoImageProcessor.from_pretrained(
            "SIATCN/vit_tumor_radius_detection_finetuned"
        )

    def _init_llm(self) -> None:
        """Initialize the language model for report generation."""
        print("Loading language model pipeline...")
        self.pipe = pipeline(
            "text-generation",
            model="unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
            torch_dtype=torch.float16,
            device_map="auto",
            model_kwargs={
                "load_in_4bit": True,
                "bnb_4bit_compute_dtype": torch.float16,
            }
        )

    def _generate_synthetic_metadata(self) -> PatientMetadata:
        """Generate realistic patient metadata for breast cancer screening."""
        age = random.randint(40, 75)
        smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
        family_history = random.choice([True, False])
        menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
        previous_mammogram = random.choice([True, False])
        breast_density = random.choice(["A: Almost entirely fatty", 
                                      "B: Scattered fibroglandular",
                                      "C: Heterogeneously dense",
                                      "D: Extremely dense"])
        hormone_therapy = random.choice([True, False])

        return PatientMetadata(
            age=age,
            smoking_status=smoking_status,
            family_history=family_history,
            menopause_status=menopause_status,
            previous_mammogram=previous_mammogram,
            breast_density=breast_density,
            hormone_therapy=hormone_therapy
        )

    def _process_image(self, image: Image.Image) -> Image.Image:
        """Process input image for model consumption."""
        if image.mode != 'RGB':
            image = image.convert('RGB')
        return image.resize((224, 224))

    @torch.no_grad()
    def _analyze_image(self, image: Image.Image) -> AnalysisResult:
        """Perform abnormality detection and size measurement."""
        # Generate metadata
        metadata = self._generate_synthetic_metadata()

        # Detect abnormality
        tumor_inputs = self.tumor_processor(image, return_tensors="pt").to(self.device)
        tumor_outputs = self.tumor_detector(**tumor_inputs)
        tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu()
        has_tumor = tumor_probs[1] > tumor_probs[0]
        confidence = float(tumor_probs[1] if has_tumor else tumor_probs[0])

        # Measure size
        size_inputs = self.size_processor(image, return_tensors="pt").to(self.device)
        size_outputs = self.size_detector(**size_inputs)
        size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu()
        sizes = ["no-tumor", "0.5", "1.0", "1.5"]
        tumor_size = sizes[size_pred.argmax().item()]

        return AnalysisResult(has_tumor, tumor_size, confidence, metadata)

    def _generate_medical_report(self, analysis: AnalysisResult) -> str:
        """Generate a simplified medical report."""
        prompt = f"""<|system|>You are a radiologist providing clear and concise medical reports.</s>
<|user|>Generate a brief medical report for this microwave breast imaging scan:

Findings:
- {'Abnormal' if analysis.has_tumor else 'Normal'} dielectric properties
- Size: {analysis.tumor_size} cm
- Confidence: {analysis.confidence:.2%}
- Patient age: {analysis.metadata.age}
- Risk factors: {', '.join([
    'family history' if analysis.metadata.family_history else '',
    analysis.metadata.smoking_status.lower(),
    'hormone therapy' if analysis.metadata.hormone_therapy else ''
    ]).strip(', ')}

Provide:
1. One sentence interpreting the findings
2. One clear management recommendation</s>
<|assistant|>"""

        try:
            response = self.pipe(
                prompt,
                max_new_tokens=128,
                temperature=0.3,
                top_p=0.9,
                repetition_penalty=1.1,
                do_sample=True,
                num_return_sequences=1
            )[0]["generated_text"]

            # Extract assistant's response
            if "<|assistant|>" in response:
                report = response.split("<|assistant|>")[-1].strip()
            else:
                report = response[len(prompt):].strip()

            # Simple validation
            if len(report.split()) >= 10:
                return f"""INTERPRETATION AND RECOMMENDATION:
{report}"""
            
            print("Report too short, using fallback")
            return self._generate_fallback_report(analysis)

        except Exception as e:
            print(f"Error in report generation: {str(e)}")
            return self._generate_fallback_report(analysis)

    def _generate_fallback_report(self, analysis: AnalysisResult) -> str:
        """Generate a simple fallback report."""
        if analysis.has_tumor:
            return f"""INTERPRETATION AND RECOMMENDATION:
Microwave imaging reveals abnormal dielectric properties measuring {analysis.tumor_size} cm with {analysis.confidence:.1%} confidence level.

{'Immediate conventional imaging and clinical correlation recommended.' if analysis.tumor_size in ['1.0', '1.5'] else 'Follow-up imaging recommended in 6 months.'}"""
        else:
            return f"""INTERPRETATION AND RECOMMENDATION:
Microwave imaging shows normal dielectric properties with {analysis.confidence:.1%} confidence level.

Routine screening recommended per standard protocol."""

    def analyze(self, image: Image.Image) -> str:
        """Main analysis pipeline."""
        try:
            processed_image = self._process_image(image)
            analysis = self._analyze_image(processed_image)
            report = self._generate_medical_report(analysis)
            
            return f"""MICROWAVE IMAGING ANALYSIS:
• Detection: {'Positive' if analysis.has_tumor else 'Negative'}
• Size: {analysis.tumor_size} cm


PATIENT INFO:
• Age: {analysis.metadata.age} years
• Risk Factors: {', '.join([
    'family history' if analysis.metadata.family_history else '',
    analysis.metadata.smoking_status.lower(),
    'hormone therapy' if analysis.metadata.hormone_therapy else '',
    ]).strip(', ')}

REPORT:
{report}"""
        except Exception as e:
            return f"Error during analysis: {str(e)}"

def create_interface() -> gr.Interface:
    """Create the Gradio interface."""
    analyzer = BreastSinogramAnalyzer()
    
    interface = gr.Interface(
        fn=analyzer.analyze,
        inputs=[
            gr.Image(type="pil", label="Upload Breast Microwave Image")
        ],
        outputs=[
            gr.Textbox(label="Analysis Results", lines=20)
        ],
        title="Breast Cancer Microwave Imaging Analysis System",
        description="Upload a breast microwave image for comprehensive analysis and medical assessment.",
    )
    
    return interface

if __name__ == "__main__":
    print("Starting application...")
    interface = create_interface()
    interface.launch(debug=True, share=True)