BreastCare / app.py
AliArshad's picture
Update app.py
08ce85d verified
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch
from typing import Tuple, Optional, Dict, Any
from dataclasses import dataclass
import random
@dataclass
class PatientMetadata:
age: int
smoking_status: str
family_history: bool
menopause_status: str
previous_mammogram: bool
breast_density: str
hormone_therapy: bool
@dataclass
class AnalysisResult:
has_tumor: bool
tumor_size: str
metadata: PatientMetadata
class BreastSinogramAnalyzer:
def __init__(self):
"""Initialize the analyzer with required models."""
print("Initializing system...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {self.device}")
self._init_vision_models()
self._init_llm()
print("Initialization complete!")
def _init_vision_models(self) -> None:
"""Initialize vision models for abnormality detection and size measurement."""
print("Loading detection models...")
self.tumor_detector = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_classifier"
).to(self.device).eval()
self.tumor_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
self.size_detector = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_radius_detection_finetuned"
).to(self.device).eval()
self.size_processor = AutoImageProcessor.from_pretrained(
"SIATCN/vit_tumor_radius_detection_finetuned"
)
def _init_llm(self) -> None:
"""Initialize the Qwen language model for report generation."""
print("Loading Qwen language model...")
self.model_name = "Qwen/QwQ-32B-Preview"
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype="auto",
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
def _generate_synthetic_metadata(self) -> PatientMetadata:
"""Generate realistic patient metadata for breast cancer screening."""
age = random.randint(40, 75)
smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"])
family_history = random.choice([True, False])
menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal"
previous_mammogram = random.choice([True, False])
breast_density = random.choice(["A: Almost entirely fatty",
"B: Scattered fibroglandular",
"C: Heterogeneously dense",
"D: Extremely dense"])
hormone_therapy = random.choice([True, False])
return PatientMetadata(
age=age,
smoking_status=smoking_status,
family_history=family_history,
menopause_status=menopause_status,
previous_mammogram=previous_mammogram,
breast_density=breast_density,
hormone_therapy=hormone_therapy
)
def _process_image(self, image: Image.Image) -> Image.Image:
"""Process input image for model consumption."""
if image.mode != 'RGB':
image = image.convert('RGB')
return image.resize((224, 224))
@torch.no_grad()
def _analyze_image(self, image: Image.Image) -> AnalysisResult:
"""Perform abnormality detection and size measurement."""
metadata = self._generate_synthetic_metadata()
# Detect abnormality
tumor_inputs = self.tumor_processor(image, return_tensors="pt").to(self.device)
tumor_outputs = self.tumor_detector(**tumor_inputs)
tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu()
has_tumor = tumor_probs[1] > tumor_probs[0]
# Measure size if tumor detected
size_inputs = self.size_processor(image, return_tensors="pt").to(self.device)
size_outputs = self.size_detector(**size_inputs)
size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu()
sizes = ["no-tumor", "0.5", "1.0", "1.5"]
tumor_size = sizes[size_pred.argmax().item()]
return AnalysisResult(has_tumor, tumor_size, metadata)
def _generate_medical_report(self, analysis: AnalysisResult) -> str:
"""Generate a clear medical report using Qwen."""
try:
messages = [
{
"role": "system",
"content": "You are a radiologist providing clear and straightforward medical reports. Focus on clarity and actionable recommendations."
},
{
"role": "user",
"content": f"""Generate a clear medical report for this breast imaging scan:
Scan Results:
- Finding: {'Abnormal area detected' if analysis.has_tumor else 'No abnormalities detected'}
{f'- Size of abnormal area: {analysis.tumor_size} cm' if analysis.has_tumor else ''}
Patient Information:
- Age: {analysis.metadata.age} years
- Risk factors: {', '.join([
'family history of breast cancer' if analysis.metadata.family_history else '',
f'{analysis.metadata.smoking_status.lower()}',
'currently on hormone therapy' if analysis.metadata.hormone_therapy else ''
]).strip(', ')}
Please provide:
1. A clear interpretation of the findings
2. A specific recommendation for next steps"""
}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=128,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
if len(response.split()) >= 10:
return f"""FINDINGS AND RECOMMENDATIONS:
{response}"""
return self._generate_fallback_report(analysis)
except Exception as e:
print(f"Error in report generation: {str(e)}")
return self._generate_fallback_report(analysis)
def _generate_fallback_report(self, analysis: AnalysisResult) -> str:
"""Generate a clear fallback report."""
if analysis.has_tumor:
return f"""FINDINGS AND RECOMMENDATIONS:
Finding: An abnormal area measuring {analysis.tumor_size} cm was detected during the scan.
Recommendation: {'An immediate follow-up with conventional mammogram and ultrasound is required.' if analysis.tumor_size in ['1.0', '1.5'] else 'A follow-up scan is recommended in 6 months.'}"""
else:
return """FINDINGS AND RECOMMENDATIONS:
Finding: No abnormal areas were detected during this scan.
Recommendation: Continue with routine screening as per standard guidelines."""
def analyze(self, image: Image.Image) -> str:
"""Main analysis pipeline."""
try:
processed_image = self._process_image(image)
analysis = self._analyze_image(processed_image)
report = self._generate_medical_report(analysis)
return f"""SCAN RESULTS:
{'⚠️ Abnormal area detected' if analysis.has_tumor else '✓ No abnormalities detected'}
{f'Size of abnormal area: {analysis.tumor_size} cm' if analysis.has_tumor else ''}
PATIENT INFORMATION:
• Age: {analysis.metadata.age} years
• Risk Factors: {', '.join([
'family history of breast cancer' if analysis.metadata.family_history else '',
analysis.metadata.smoking_status.lower(),
'currently on hormone therapy' if analysis.metadata.hormone_therapy else '',
]).strip(', ')}
{report}"""
except Exception as e:
return f"Error during analysis: {str(e)}"
def create_interface() -> gr.Interface:
"""Create the Gradio interface."""
analyzer = BreastSinogramAnalyzer()
interface = gr.Interface(
fn=analyzer.analyze,
inputs=[
gr.Image(type="pil", label="Upload Breast Image for Analysis")
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20)
],
title="Breast Imaging Analysis System",
description="Upload a breast image for analysis and medical assessment.",
)
return interface
if __name__ == "__main__":
print("Starting application...")
interface = create_interface()
interface.launch(debug=True, share=True)