Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import (
|
3 |
+
AutoImageProcessor,
|
4 |
+
AutoModelForImageClassification,
|
5 |
+
pipeline
|
6 |
+
)
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
import random
|
10 |
+
import json
|
11 |
+
import time
|
12 |
+
|
13 |
+
class MedicalImageAnalysisSystem:
|
14 |
+
def __init__(self):
|
15 |
+
print("Initializing system...")
|
16 |
+
|
17 |
+
# Check for CUDA availability
|
18 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
print(f"Using device: {self.device}")
|
20 |
+
|
21 |
+
# Load models one at a time with progress messages
|
22 |
+
print("Loading tumor classifier...")
|
23 |
+
self.tumor_classifier_model = AutoModelForImageClassification.from_pretrained(
|
24 |
+
"SIATCN/vit_tumor_classifier",
|
25 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
26 |
+
).to(self.device)
|
27 |
+
self.tumor_classifier_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
|
28 |
+
|
29 |
+
print("Loading tumor radius detector...")
|
30 |
+
self.radius_model = AutoModelForImageClassification.from_pretrained(
|
31 |
+
"SIATCN/vit_tumor_radius_detection_finetuned",
|
32 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
33 |
+
).to(self.device)
|
34 |
+
self.radius_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_radius_detection_finetuned")
|
35 |
+
|
36 |
+
print("Loading language model...")
|
37 |
+
# Using a smaller model for faster inference
|
38 |
+
self.llm = pipeline(
|
39 |
+
"text-generation",
|
40 |
+
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
41 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
42 |
+
device_map="auto",
|
43 |
+
model_kwargs={"low_cpu_mem_usage": True}
|
44 |
+
)
|
45 |
+
|
46 |
+
print("System initialization complete!")
|
47 |
+
|
48 |
+
def generate_synthetic_metadata(self):
|
49 |
+
return {
|
50 |
+
"age": random.randint(25, 85),
|
51 |
+
"gender": random.choice(["Male", "Female"]),
|
52 |
+
"smoking_status": random.choice(["Never Smoker", "Former Smoker", "Current Smoker"]),
|
53 |
+
"drinking_status": random.choice(["Non-drinker", "Social Drinker", "Regular Drinker"]),
|
54 |
+
"medications": random.sample([
|
55 |
+
"Lisinopril", "Metformin", "Levothyroxine", "Amlodipine",
|
56 |
+
"Metoprolol", "Omeprazole", "Simvastatin", "Losartan"
|
57 |
+
], random.randint(0, 3))
|
58 |
+
}
|
59 |
+
|
60 |
+
def process_image(self, image):
|
61 |
+
if isinstance(image, str):
|
62 |
+
image = Image.open(image)
|
63 |
+
if image.mode != 'RGB':
|
64 |
+
image = image.convert('RGB')
|
65 |
+
return image.resize((224, 224))
|
66 |
+
|
67 |
+
@torch.no_grad() # Disable gradient computation for inference
|
68 |
+
def predict_tumor_presence(self, processed_image):
|
69 |
+
inputs = self.tumor_classifier_processor(processed_image, return_tensors="pt")
|
70 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()} # Move inputs to correct device
|
71 |
+
outputs = self.tumor_classifier_model(**inputs)
|
72 |
+
predictions = torch.softmax(outputs.logits, dim=-1)
|
73 |
+
probs = predictions[0].cpu().tolist() # Move back to CPU for numpy operations
|
74 |
+
return {
|
75 |
+
"non-tumor": float(probs[0]),
|
76 |
+
"tumor": float(probs[1])
|
77 |
+
}
|
78 |
+
|
79 |
+
@torch.no_grad() # Disable gradient computation for inference
|
80 |
+
def predict_tumor_radius(self, processed_image):
|
81 |
+
inputs = self.radius_processor(processed_image, return_tensors="pt")
|
82 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()} # Move inputs to correct device
|
83 |
+
outputs = self.radius_model(**inputs)
|
84 |
+
predictions = outputs.logits.softmax(dim=-1)
|
85 |
+
predicted_label = predictions.argmax().item()
|
86 |
+
confidence = predictions[0][predicted_label].cpu().item() # Move back to CPU
|
87 |
+
|
88 |
+
class_names = ["no-tumor", "0.5", "1.0", "1.5"]
|
89 |
+
return {
|
90 |
+
"radius": class_names[predicted_label],
|
91 |
+
"confidence": float(confidence)
|
92 |
+
}
|
93 |
+
|
94 |
+
def generate_llm_interpretation(self, tumor_presence, tumor_radius, metadata):
|
95 |
+
prompt = f"""<|system|>You are a medical AI assistant. Be concise but thorough.</s>
|
96 |
+
<|user|>Analyze these results:
|
97 |
+
Tumor Detection: {json.dumps(tumor_presence)}
|
98 |
+
Tumor Radius: {json.dumps(tumor_radius)}
|
99 |
+
Patient: {metadata['age']}y/o {metadata['gender']}, {metadata['smoking_status']}, {metadata['drinking_status']}
|
100 |
+
Medications: {', '.join(metadata['medications']) if metadata['medications'] else 'None'}
|
101 |
+
Provide: 1. Key findings 2. Risk assessment 3. Recommendations</s>
|
102 |
+
<|assistant|>"""
|
103 |
+
|
104 |
+
response = self.llm(
|
105 |
+
prompt,
|
106 |
+
max_new_tokens=300, # Reduced for faster response
|
107 |
+
temperature=0.7,
|
108 |
+
do_sample=True,
|
109 |
+
top_p=0.95,
|
110 |
+
num_return_sequences=1
|
111 |
+
)
|
112 |
+
|
113 |
+
return response[0]['generated_text'].split("<|assistant|>")[-1].strip()
|
114 |
+
|
115 |
+
def analyze_image(self, image):
|
116 |
+
try:
|
117 |
+
# Add progress updates
|
118 |
+
yield "Processing image..."
|
119 |
+
processed_image = self.process_image(image)
|
120 |
+
|
121 |
+
yield "Generating patient metadata..."
|
122 |
+
metadata = self.generate_synthetic_metadata()
|
123 |
+
|
124 |
+
yield "Analyzing tumor presence..."
|
125 |
+
tumor_presence = self.predict_tumor_presence(processed_image)
|
126 |
+
|
127 |
+
yield "Analyzing tumor radius..."
|
128 |
+
tumor_radius = self.predict_tumor_radius(processed_image)
|
129 |
+
|
130 |
+
yield "Generating medical interpretation..."
|
131 |
+
interpretation = self.generate_llm_interpretation(
|
132 |
+
tumor_presence,
|
133 |
+
tumor_radius,
|
134 |
+
metadata
|
135 |
+
)
|
136 |
+
|
137 |
+
# Final results
|
138 |
+
result = {
|
139 |
+
"metadata": metadata,
|
140 |
+
"tumor_presence": tumor_presence,
|
141 |
+
"tumor_radius": tumor_radius,
|
142 |
+
"interpretation": interpretation
|
143 |
+
}
|
144 |
+
|
145 |
+
yield self.format_results(result)
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
yield f"Error: {str(e)}"
|
149 |
+
|
150 |
+
def format_results(self, results):
|
151 |
+
return f"""
|
152 |
+
Patient Metadata:
|
153 |
+
{json.dumps(results['metadata'], indent=2)}
|
154 |
+
|
155 |
+
Tumor Presence Analysis:
|
156 |
+
{json.dumps(results['tumor_presence'], indent=2)}
|
157 |
+
|
158 |
+
Tumor Radius Analysis:
|
159 |
+
{json.dumps(results['tumor_radius'], indent=2)}
|
160 |
+
|
161 |
+
Medical Interpretation and Recommendations:
|
162 |
+
{results['interpretation']}
|
163 |
+
"""
|
164 |
+
|
165 |
+
def create_interface():
|
166 |
+
system = MedicalImageAnalysisSystem()
|
167 |
+
|
168 |
+
iface = gr.Interface(
|
169 |
+
fn=system.analyze_image,
|
170 |
+
inputs=[
|
171 |
+
gr.Image(type="pil", label="Upload Medical Image")
|
172 |
+
],
|
173 |
+
outputs=[
|
174 |
+
gr.Textbox(label="Analysis Results", lines=20)
|
175 |
+
],
|
176 |
+
title="Medical Image Analysis System",
|
177 |
+
description="Upload a medical image for tumor analysis and recommendations.",
|
178 |
+
theme=gr.themes.Base(),
|
179 |
+
flagging=False
|
180 |
+
)
|
181 |
+
|
182 |
+
return iface
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
print("Starting application...")
|
186 |
+
iface = create_interface()
|
187 |
+
iface.queue() # Enable queuing for better handling of multiple requests
|
188 |
+
iface.launch(debug=True, share=True)
|