Spaces:
Build error
Build error
File size: 6,260 Bytes
0179eff 8793a8a 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 8e4e703 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff 7f4ae92 0179eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
# -*- coding: utf-8 -*-
"""Deploy Barcelo demo.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9
![ ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png)
# Modelo
YOLO es una familia de modelos de detección de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
## Gradio Inferencia
![](https://i.ibb.co/982NS6m/header.png)
Este Notebook se acelera opcionalmente con un entorno de ejecución de GPU
----------------------------------------------------------------------
YOLOv5 Gradio demo
*Author: Ultralytics LLC and Gradio*
# Código
"""
#!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies
import os
import re
import json
import pandas as pd
import gradio as gr
import torch
from PIL import Image
# Images
torch.hub.download_url_to_file('https://huggingface.co/spaces/Municipalidad-de-Vicente-Lopez/Trampas_Barcelo/resolve/main/2024-03-11T10-50-27.jpg', 'ejemplo1.jpg')
torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg')
# model = torch.hub.load('ultralytics/yolov9', 'custom', path='best.pt', force_reload=True, autoshape=True, trust_repo=True)
model = torch.hub.load('yolov9', 'custom', path='best.pt', source='local', force_reload=True, autoshape=True) # load on CPU
#HF_TOKEN = os.getenv("ZIKA_TOKEN_WRITE")
#hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "demo-iazika-flags")
def getQuantity(string):
contador_raw = ''.join(string.split(" ")[3:])
resultado_especie_1 = 'Aedes'
resultado_especie_2 = 'Mosquito'
resultado_especie_3 = 'Mosca'
resultado_cantidad_1 = ''.join(re.findall(r'\d+',''.join(re.findall(r'\d+'+resultado_especie_1, contador_raw))))
resultado_cantidad_2 = ''.join(re.findall(r'\d+',''.join(re.findall(r'\d+'+resultado_especie_2, contador_raw))))
resultado_cantidad_3 = ''.join(re.findall(r'\d+',''.join(re.findall(r'\d+'+resultado_especie_3, contador_raw))))
resultado_cantidad_1 = resultado_cantidad_1 if len(resultado_cantidad_1) > 0 else "0"
resultado_cantidad_2 = resultado_cantidad_2 if len(resultado_cantidad_2) > 0 else "0"
resultado_cantidad_3 = resultado_cantidad_3 if len(resultado_cantidad_3) > 0 else "0"
resultado_lista = [[resultado_cantidad_1,resultado_especie_1],
[resultado_cantidad_2,resultado_especie_2],
[resultado_cantidad_3,resultado_especie_3]]
return resultado_lista
def listJSON(resultado):
resultado_lista = getQuantity(resultado)
img_name = " ".join(resultado.split(" ")[0:2])
img_size = "".join(resultado.split(" ")[2])
strlista = ""
for resultado_lista, description in resultado_lista:
strlista += '{"quantity":"'+resultado_lista+'","description":"'+description+'"},'
strlista = strlista[:-1]
str_resultado_lista = '{"image":"'+str(img_name)+'","size":"'+str(img_size)+'","detail":['+strlista+']}'
json_string = json.loads(str_resultado_lista)
return json_string
def arrayLista(resultado):
resultado_lista = getQuantity(resultado)
df = pd.DataFrame(resultado_lista,columns=['Cantidad','Especie'])
return df
def yolo(size, iou, conf, im):
'''Wrapper fn for gradio'''
g = (int(size) / max(im.size)) # gain
im = im.resize((int(x * g) for x in im.size), Image.LANCZOS) # resize with antialiasing
model.iou = iou
model.conf = conf
results2 = model(im) # inference
results2.render() # updates results.imgs with boxes and labels
results_detail = str(results2)
lista = listJSON(results_detail)
lista2 = arrayLista(results_detail)
return Image.fromarray(results2.ims[0]), lista2, lista
#------------ Interface-------------
in1 = gr.inputs.Radio(['640', '1280'], label="Tamaño de la imagen", default='640', type='value')
in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.25, label='NMS IoU threshold')
in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold')
in4 = gr.inputs.Image(type='pil', label="Original Image")
out2 = gr.outputs.Image(type="pil", label="YOLOv5")
out3 = gr.outputs.Dataframe(label="Cantidad_especie", headers=['Cantidad','Especie'], type="pandas")
out4 = gr.outputs.JSON(label="JSON")
#-------------- Text-----
title = 'Trampas Barceló'
description = '<p><center>Sistemas de Desarrollado por Subsecretaría de Modernización del Municipio de Vicente López. Advertencia solo usar fotos provenientes de las trampas Barceló, no de celular o foto de internet.<img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/></center></p>'
article ="<p style='text-align: center'><a href='https://docs.google.com/presentation/d/1T5CdcLSzgRe8cQpoi_sPB4U170551NGOrZNykcJD0xU/edit?usp=sharing' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://drive.google.com/drive/folders/1owACN3HGIMo4zm2GQ_jf-OhGNeBVRS7l?usp=sharing ' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/Municipalidad-de-Vicente-Lopez/Trampa_Barcelo' target='_blank'>Repo Github</a></p></center></p>"
examples = [['640',0.25, 0.5,'ejemplo1.jpg'], ['640',0.25, 0.5,'ejemplo2.jpg']]
iface = gr.Interface(yolo,
inputs=[in1, in2, in3, in4],
examples=examples,
analytics_enabled=False,
allow_flagging="manual",
flagging_options=["Correcto", "Incorrecto", "Casi correcto", "Error", "Otro"],
#flagging_callback=hf_writer
)
iface.launch(enable_queue=True, debug=True)
"""For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
## Citation
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
""" |