AmirShabani commited on
Commit
415bdb0
·
1 Parent(s): b487903

List by name

Browse files
Files changed (1) hide show
  1. core.py +13 -4
core.py CHANGED
@@ -6,11 +6,11 @@ def install(package):
6
  else:
7
  pip._internal.main(['install', package])
8
 
9
- print("Everything goes bang")
10
  install('torch_geometric')
11
  install('torch_scatter')
12
  install('torch_sparse')
13
- print("It's havoc baby")
14
 
15
  import pickle
16
  import numpy as np
@@ -158,7 +158,7 @@ def create_user_embedding(movie_ratings, movies_df):
158
  user_ratings_df['movieId'] = user_ratings_df.index
159
 
160
  # Merge the user_ratings_df with the movies_df to get the movie embeddings
161
- user_movie_embeddings = (user_ratings_df).merge(movies_df, on='movieId', how='left')
162
 
163
  # Multiply the ratings with the movie embeddings
164
  user_movie_embeddings = user_movie_embeddings.iloc[:, 2:].values * user_movie_embeddings['rating'].values[:, np.newaxis]
@@ -178,7 +178,16 @@ def find_closest_user(user_embedding, tree, user_embeddings):
178
 
179
  return closest_user_embedding
180
 
181
- def output_list(movie_ratings, movies_df = movie_embeds, tree = btree, user_embeddings = user_embeds, movies = final_movies):
 
 
 
 
 
 
 
 
 
182
  user_embed = create_user_embedding(movie_ratings, movie_embeds)
183
  # Call the find_closest_user function with the pre-built BallTree
184
  closest_user_embed = find_closest_user(user_embed, tree, user_embeds)
 
6
  else:
7
  pip._internal.main(['install', package])
8
 
9
+ print("Everything goes bang.")
10
  install('torch_geometric')
11
  install('torch_scatter')
12
  install('torch_sparse')
13
+ print("It's havoc baby!")
14
 
15
  import pickle
16
  import numpy as np
 
158
  user_ratings_df['movieId'] = user_ratings_df.index
159
 
160
  # Merge the user_ratings_df with the movies_df to get the movie embeddings
161
+ user_movie_embeddings = user_ratings_df.merge(movies_df, on='movieId', how='left')
162
 
163
  # Multiply the ratings with the movie embeddings
164
  user_movie_embeddings = user_movie_embeddings.iloc[:, 2:].values * user_movie_embeddings['rating'].values[:, np.newaxis]
 
178
 
179
  return closest_user_embedding
180
 
181
+
182
+ def drop_non_numerical_columns(df):
183
+ non_numerical_columns = df.select_dtypes(exclude=[float, int]).columns
184
+ return df.drop(columns=non_numerical_columns, inplace=False)
185
+
186
+ def output_list(input_dict, movies_df = movie_embeds, tree = btree, user_embeddings = user_embeds, movies = final_movies):
187
+ movie_ratings = {}
188
+ for movie_title, rating in input_dict:
189
+ index = movies.index[movies['title'] == True].tolist()[0]
190
+ movie_ratings[index] = rating
191
  user_embed = create_user_embedding(movie_ratings, movie_embeds)
192
  # Call the find_closest_user function with the pre-built BallTree
193
  closest_user_embed = find_closest_user(user_embed, tree, user_embeds)