Spaces:
Running
Running
File size: 7,367 Bytes
6aaea8c 318ea39 6aaea8c 27a788e 6aaea8c 318ea39 6aaea8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
import tempfile
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import torch
import openai
import json
from urllib.parse import urlparse, parse_qs
import os
import gradio as gr
def extract_video_id(url):
"""Extracts the video ID from a YouTube URL."""
try:
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
query_params = parse_qs(parsed_url.query)
return query_params.get('v', [None])[0]
elif "youtu.be" in parsed_url.netloc:
return parsed_url.path.strip("/")
else:
print("Invalid YouTube URL.")
return None
except Exception as e:
print(f"Error parsing URL: {e}")
return None
def get_video_duration(video_id, api_key):
"""Fetches the video duration in minutes."""
try:
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
request = youtube.videos().list(part="contentDetails", id=video_id)
response = request.execute()
if response["items"]:
duration = response["items"][0]["contentDetails"]["duration"]
match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
hours = int(match.group(1)) if match.group(1) else 0
minutes = int(match.group(2)) if match.group(2) else 0
seconds = int(match.group(3)) if match.group(3) else 0
return hours * 60 + minutes + seconds / 60
else:
print("No video details found.")
return None
except Exception as e:
print(f"Error fetching video duration: {e}")
return None
def download_and_transcribe_with_whisper(youtube_url):
try:
with tempfile.TemporaryDirectory() as temp_dir:
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': temp_audio_file,
'extractaudio': True,
'audioquality': 1,
}
# Download audio using yt-dlp
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
# Convert to wav for Whisper
audio = AudioSegment.from_file(temp_audio_file)
wav_file = os.path.join(temp_dir, "audio.wav")
audio.export(wav_file, format="wav")
# Run Whisper transcription
model = whisper.load_model("large")
result = model.transcribe(wav_file)
transcript = result['text']
return transcript
except Exception as e:
print(f"Error during transcription: {e}")
return None
def get_transcript_from_youtube_api(video_id, video_length):
"""Fetches transcript using YouTube API if available."""
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
for transcript in transcript_list:
if not transcript.is_generated:
segments = transcript.fetch()
return " ".join(segment['text'] for segment in segments)
if video_length > 15:
auto_transcript = transcript_list.find_generated_transcript(['en'])
if auto_transcript:
segments = auto_transcript.fetch()
return " ".join(segment['text'] for segment in segments)
print("Manual transcript not available, and video is too short for auto-transcript.")
return None
except Exception as e:
print(f"Error fetching transcript: {e}")
return None
def get_transcript(youtube_url, api_key):
"""Gets transcript from YouTube API or Whisper if unavailable."""
video_id = extract_video_id(youtube_url)
if not video_id:
print("Invalid or unsupported YouTube URL.")
return None
video_length = get_video_duration(video_id, api_key)
if video_length is not None:
print(f"Video length: {video_length:.2f} minutes.")
transcript = get_transcript_from_youtube_api(video_id, video_length)
if transcript:
return transcript
print("Using Whisper for transcription.")
return download_and_transcribe_with_whisper(youtube_url)
else:
print("Error fetching video duration.")
return None
def summarize_text_huggingface(text):
"""Summarizes text using a Hugging Face summarization model."""
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
max_input_length = 1024
chunk_overlap = 100
text_chunks = [
text[i:i + max_input_length]
for i in range(0, len(text), max_input_length - chunk_overlap)
]
summaries = [
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
for chunk in text_chunks
]
return " ".join(summaries)
def generate_optimized_content(api_key, summarized_transcript):
openai.api_key = api_key
prompt = f"""
Analyze the following summarized YouTube video transcript and:
1. Extract the top 10 keywords.
2. Generate an optimized title (less than 65 characters).
3. Create an engaging description.
4. Generate related tags for the video.
Summarized Transcript:
{summarized_transcript}
Provide the results in the following JSON format:
{{
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
"title": "Generated Title",
"description": "Generated Description",
"tags": ["tag1", "tag2", ..., "tag10"]
}}
"""
try:
# Use the updated OpenAI API format for chat completions
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "system", "content": "You are an SEO expert."},
{"role": "user", "content": prompt}]
)
# Extract and parse the response
response_content = response['choices'][0]['message']['content']
content = json.loads(response_content)
return content
except Exception as e:
print(f"Error generating content: {e}")
return None
def process_youtube_url(youtube_url, youtube_api_key, openai_api_key):
transcript = get_transcript(youtube_url, youtube_api_key)
if not transcript:
return "Could not fetch the transcript. Please try another video."
summary = summarize_text_huggingface(transcript)
optimized_content = generate_optimized_content(openai_api_key, summary)
if optimized_content:
return json.dumps(optimized_content, indent=4)
else:
return "Error generating optimized content."
# Gradio Interface
def gradio_interface(youtube_url, youtube_api_key, openai_api_key):
return process_youtube_url(youtube_url, youtube_api_key, openai_api_key)
# Creating the Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="YouTube URL"),
gr.Textbox(label="YouTube API Key", type="password"),
gr.Textbox(label="OpenAI API Key", type="password")
],
outputs=gr.Textbox(label="Optimized Content"),
live=True
)
if __name__ == "__main__":
iface.launch()
|