File size: 7,367 Bytes
6aaea8c
 
 
 
 
 
 
 
 
 
 
 
318ea39
6aaea8c
27a788e
6aaea8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318ea39
6aaea8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
import tempfile
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import torch
import openai
import json
from urllib.parse import urlparse, parse_qs
import os
import gradio as gr

def extract_video_id(url):
    """Extracts the video ID from a YouTube URL."""
    try:
        parsed_url = urlparse(url)
        if "youtube.com" in parsed_url.netloc:
            query_params = parse_qs(parsed_url.query)
            return query_params.get('v', [None])[0]
        elif "youtu.be" in parsed_url.netloc:
            return parsed_url.path.strip("/")
        else:
            print("Invalid YouTube URL.")
            return None
    except Exception as e:
        print(f"Error parsing URL: {e}")
        return None

def get_video_duration(video_id, api_key):
    """Fetches the video duration in minutes."""
    try:
        youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
        request = youtube.videos().list(part="contentDetails", id=video_id)
        response = request.execute()
        if response["items"]:
            duration = response["items"][0]["contentDetails"]["duration"]
            match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
            hours = int(match.group(1)) if match.group(1) else 0
            minutes = int(match.group(2)) if match.group(2) else 0
            seconds = int(match.group(3)) if match.group(3) else 0
            return hours * 60 + minutes + seconds / 60
        else:
            print("No video details found.")
            return None
    except Exception as e:
        print(f"Error fetching video duration: {e}")
        return None

def download_and_transcribe_with_whisper(youtube_url):
    try:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_audio_file = os.path.join(temp_dir, "audio.mp3")

            ydl_opts = {
                'format': 'bestaudio/best',
                'outtmpl': temp_audio_file,
                'extractaudio': True,
                'audioquality': 1,
            }

            # Download audio using yt-dlp
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([youtube_url])

            # Convert to wav for Whisper
            audio = AudioSegment.from_file(temp_audio_file)
            wav_file = os.path.join(temp_dir, "audio.wav")
            audio.export(wav_file, format="wav")

            # Run Whisper transcription
            model = whisper.load_model("large")
            result = model.transcribe(wav_file)
            transcript = result['text']
            return transcript

    except Exception as e:
        print(f"Error during transcription: {e}")
        return None

def get_transcript_from_youtube_api(video_id, video_length):
    """Fetches transcript using YouTube API if available."""
    try:
        transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)

        for transcript in transcript_list:
            if not transcript.is_generated:
                segments = transcript.fetch()
                return " ".join(segment['text'] for segment in segments)

        if video_length > 15:
            auto_transcript = transcript_list.find_generated_transcript(['en'])
            if auto_transcript:
                segments = auto_transcript.fetch()
                return " ".join(segment['text'] for segment in segments)

        print("Manual transcript not available, and video is too short for auto-transcript.")
        return None

    except Exception as e:
        print(f"Error fetching transcript: {e}")
        return None

def get_transcript(youtube_url, api_key):
    """Gets transcript from YouTube API or Whisper if unavailable."""
    video_id = extract_video_id(youtube_url)
    if not video_id:
        print("Invalid or unsupported YouTube URL.")
        return None

    video_length = get_video_duration(video_id, api_key)
    if video_length is not None:
        print(f"Video length: {video_length:.2f} minutes.")
        transcript = get_transcript_from_youtube_api(video_id, video_length)
        if transcript:
            return transcript
        print("Using Whisper for transcription.")
        return download_and_transcribe_with_whisper(youtube_url)
    else:
        print("Error fetching video duration.")
        return None

def summarize_text_huggingface(text):
    """Summarizes text using a Hugging Face summarization model."""
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
    max_input_length = 1024
    chunk_overlap = 100
    text_chunks = [
        text[i:i + max_input_length]
        for i in range(0, len(text), max_input_length - chunk_overlap)
    ]
    summaries = [
        summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
        for chunk in text_chunks
    ]
    return " ".join(summaries)

def generate_optimized_content(api_key, summarized_transcript):
    openai.api_key = api_key

    prompt = f"""
    Analyze the following summarized YouTube video transcript and:
    1. Extract the top 10 keywords.
    2. Generate an optimized title (less than 65 characters).
    3. Create an engaging description.
    4. Generate related tags for the video.

    Summarized Transcript:
    {summarized_transcript}

    Provide the results in the following JSON format:
    {{
        "keywords": ["keyword1", "keyword2", ..., "keyword10"],
        "title": "Generated Title",
        "description": "Generated Description",
        "tags": ["tag1", "tag2", ..., "tag10"]
    }}
    """

    try:
        # Use the updated OpenAI API format for chat completions
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "system", "content": "You are an SEO expert."},
                      {"role": "user", "content": prompt}]
        )
        # Extract and parse the response
        response_content = response['choices'][0]['message']['content']
        content = json.loads(response_content)
        return content

    except Exception as e:
        print(f"Error generating content: {e}")
        return None


def process_youtube_url(youtube_url, youtube_api_key, openai_api_key):
    transcript = get_transcript(youtube_url, youtube_api_key)
    if not transcript:
        return "Could not fetch the transcript. Please try another video."

    summary = summarize_text_huggingface(transcript)

    optimized_content = generate_optimized_content(openai_api_key, summary)
    if optimized_content:
        return json.dumps(optimized_content, indent=4)
    else:
        return "Error generating optimized content."


# Gradio Interface
def gradio_interface(youtube_url, youtube_api_key, openai_api_key):
    return process_youtube_url(youtube_url, youtube_api_key, openai_api_key)


# Creating the Gradio interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="YouTube URL"),
        gr.Textbox(label="YouTube API Key", type="password"),
        gr.Textbox(label="OpenAI API Key", type="password")
    ],
    outputs=gr.Textbox(label="Optimized Content"),
    live=True
)

if __name__ == "__main__":
    iface.launch()