AnkitAI commited on
Commit
2a836bb
·
verified ·
1 Parent(s): 58c083f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -28
app.py CHANGED
@@ -1,35 +1,35 @@
1
- # import gradio as gr
2
 
3
- # gr.load("models/AnkitAI/reviews-roberta-base-sentiment-analysis").launch()
4
 
5
- import gradio as gr
6
- from transformers import RobertaTokenizer, RobertaForSequenceClassification
7
- import torch
8
 
9
- # Load the model and tokenizer
10
- model_name = "AnkitAI/reviews-roberta-base-sentiment-analysis"
11
- model = RobertaForSequenceClassification.from_pretrained(model_name)
12
- tokenizer = RobertaTokenizer.from_pretrained(model_name)
13
 
14
- # Define a function to perform sentiment analysis and map labels
15
- def predict_sentiment(text):
16
- inputs = tokenizer(text, return_tensors="pt")
17
- outputs = model(**inputs)
18
- logits = outputs.logits
19
- predicted_class_id = torch.argmax(logits, dim=1).item()
20
 
21
- # Map class id to label
22
- labels = ["Negative", "Positive"]
23
- return labels[predicted_class_id]
24
 
25
- # Create a Gradio interface
26
- interface = gr.Interface(
27
- fn=predict_sentiment,
28
- inputs=gr.inputs.Textbox(lines=2, placeholder="Enter a review here..."),
29
- outputs="text",
30
- title="Reviews Sentiment Analysis",
31
- description="Enter an Amazon review to see if it is positive or negative."
32
- )
33
 
34
- # Launch the interface
35
- interface.launch()
 
1
+ import gradio as gr
2
 
3
+ gr.load("models/AnkitAI/reviews-roberta-base-sentiment-analysis").launch()
4
 
5
+ # import gradio as gr
6
+ # from transformers import RobertaTokenizer, RobertaForSequenceClassification
7
+ # import torch
8
 
9
+ # # Load the model and tokenizer
10
+ # model_name = "AnkitAI/reviews-roberta-base-sentiment-analysis"
11
+ # model = RobertaForSequenceClassification.from_pretrained(model_name)
12
+ # tokenizer = RobertaTokenizer.from_pretrained(model_name)
13
 
14
+ # # Define a function to perform sentiment analysis and map labels
15
+ # def predict_sentiment(text):
16
+ # inputs = tokenizer(text, return_tensors="pt")
17
+ # outputs = model(**inputs)
18
+ # logits = outputs.logits
19
+ # predicted_class_id = torch.argmax(logits, dim=1).item()
20
 
21
+ # # Map class id to label
22
+ # labels = ["Negative", "Positive"]
23
+ # return labels[predicted_class_id]
24
 
25
+ # # Create a Gradio interface
26
+ # interface = gr.Interface(
27
+ # fn=predict_sentiment,
28
+ # inputs=gr.inputs.Textbox(lines=2, placeholder="Enter a review here..."),
29
+ # outputs="text",
30
+ # title="Reviews Sentiment Analysis",
31
+ # description="Enter an Amazon review to see if it is positive or negative."
32
+ # )
33
 
34
+ # # Launch the interface
35
+ # interface.launch()