File size: 890 Bytes
dfec65b
 
 
 
 
 
87fe2e2
dfec65b
87fe2e2
dfec65b
 
 
ea9eea4
 
3ab5bd0
 
ea9eea4
 
3ab5bd0
 
 
ea9eea4
dfec65b
 
3ab5bd0
dfec65b
b30a1c0
ea9eea4
dfec65b
ea9eea4
 
3ab5bd0
 
ea9eea4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import gradio as gr
from transformers import pipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

def predict(image):
    classifier = pipeline(task="image-classification")
    preds = classifier(image)
    preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
    return preds

def format_output(output):
    formatted_output = ""
    for idx, pred in enumerate(output):
        formatted_output += f"{idx}: Score: {pred['score']}, Label: {pred['label']}\n"
    return formatted_output

description = """
"""

iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.components.Image(label="Image to classify", type="pil"),
    ],
    outputs=gr.outputs.JSON(),
    title="Image Classifier",
    description=description
)

# Apply custom formatting to the JSON output
iface.outputs[0].format = format_output

iface.launch()