Antoine245's picture
Update app.py
4de8372
raw
history blame
703 Bytes
import torch
import gradio as gr
from transformers import pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
def predict(image):
classifier = pipeline(task="image-classification")
preds = classifier(image)
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
return preds
description = """
"""
gr.Interface(
fn=predict,
inputs=[
gr.components.Image(label="Image to classify", type="pil"),
# gr.inputs.Textbox(lines=1, label="Comma separated candidate labels", placeholder="Enter labels separated by ', '",)
],
outputs=gr.Textbox(),
title="Comparateur d'image",
description=description
).launch()