Spaces:
Running
Running
File size: 12,054 Bytes
42bcb30 375396d 42bcb30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# -*- coding: utf-8 -*-
import os
import re
import sys
import typing as tp
import torch
import pysbd
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
import unicodedata
import time
#hy_segmenter = pysbd.Segmenter(language="hy", clean=False) not needed
MODEL_NAME = "AriNubar/nllb-200-distilled-600m-en-xcl"
LANGUAGES = {
"Գրաբառ Հայոց | Classical Armenian": "xcl_Armn",
"Անգլերէն | English": "eng_Latn",
}
HF_TOKEN = os.environ.get("HF_TOKEN")
def get_non_printing_char_replacer(replace_by: str = " "):
non_printable_map = {
ord(c): replace_by
for c in (chr(i) for i in range(sys.maxunicode + 1))
# same as \p{C} in perl
# see https://www.unicode.org/reports/tr44/#General_Category_Values
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
}
def replace_non_printing_char(line) -> str:
return line.translate(non_printable_map)
return replace_non_printing_char
# def clean_text(text: str, lang) -> str:
# HYW_CHARS_TO_NORMALIZE = {
# "«": '"',
# "»": '"',
# "“": '"',
# "”": '"',
# "’": "'",
# "‘": "'",
# "–": "-",
# "—": "-",
# "ՙ": "'",
# "՚": "'",
# }
# DOUBLE_CHARS_TO_NORMALIZE = {
# "Կ՛": "Կ'",
# "կ՛": "կ'",
# "Չ՛": "Չ'",
# "չ՛": "չ'",
# "Մ՛": "Մ'",
# "մ՛": "մ'",
# }
# replace_nonprint = get_non_printing_char_replacer()
# text = replace_nonprint(text)
# # print(text)
# text = text.replace("\t", " ").replace("\n", " ").replace("\r", " ").replace(r"[^\x00-\x7F]+", " ").replace(r"\s+", " ")
# text = text.strip()
# if lang == "xcl_Armn":
# text = text.translate(str.maketrans(HYW_CHARS_TO_NORMALIZE))
# for k, v in DOUBLE_CHARS_TO_NORMALIZE.items():
# text = text.replace(k, v)
# return text
def remove_special_characters(text):
# Define a regex pattern for special characters
pattern = r'[\u00A0\u200B\u200C\u200D\u200E\u200F\u2028\u2029\xad]'
return re.sub(pattern, '', text)
def common_clean_methods(text):
text = text.strip()
text = re.sub(r'\n+', '\n', text)
text = re.sub(r' +', ' ', text)
text = remove_special_characters(text)
text = text.replace("\t", "")
text = text.replace("\r", "")
text = re.sub(r'^[0-9\*\-]+$', '', text, flags=re.MULTILINE)
text = text.strip()
return text
def wa_clean_methods(text):
# 7) Merge the isolate punctuations.
text = re.sub(r' (։|:|․|…|՝|՞|`|´|~)(?=\s)', r'\1', text)
# 1) Convert all : to ։ (if it is an Armenian text there can be an English name with : in it, we should not convert those)
text = re.sub(r'(?<=[ա-ֆԱ-Ֆ])\:', '։', text)
# 2) Convert all \. to ․ (similar to the previous one)
text = re.sub(r'(?<=[ա-ֆԱ-Ֆ])\.', '․', text)
# 4) Convert all ` to ՝
# 5) Convert all ´ to ՛
# 6) Convert all ~ to ՜
# 8) Convert all < to «
# 9) Convert all > to »
# 6) Convert all ․․․ to … (Alt + 0133)
# 7) Convert all ֊ to -
text = re.sub(r'(?<=[ա-ֆԱ-Ֆ])`', '՝', text)
text = re.sub(r'(?<=[ա-ֆԱ-Ֆ])´', '՛', text)
text = re.sub(r'(?<=[ա-ֆԱ-Ֆ])~', '՜', text)
text = re.sub(r'<(?=[ա-ֆԱ-Ֆ])', '«', text)
text = re.sub(r'>(?=[ա-ֆԱ-Ֆ])', '»', text)
text = re.sub(r'․․․', '…', text)
text = re.sub(r'\.\.\.', '…', text)
text = re.sub(r'֊', '-', text)
text = re.sub(r'կ՝', 'կ', text)
text = re.sub(r'Կ՝', 'Կ', text)
text = re.sub(r'կ՛', 'կ', text)
text = re.sub(r'Կ՛', 'Կ', text)
text = re.sub(r'մ՝', 'մ', text)
text = re.sub(r'Մ՝', 'Մ', text)
text = re.sub(r'մ՛', 'մ', text)
text = re.sub(r'Մ՛', 'Մ', text)
# for « and ( there should not be a space after them
text = re.sub(r'« ', '«', text)
text = re.sub(r'\( ', '(', text)
# for ) and » there should not be a space before them
text = re.sub(r' \)', ')', text)
text = re.sub(r' »', '»', text)
return text
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
if fix_double_space:
text = re.sub(r"\s+", " ", text)
text = text.strip()
sentences = splitter.segment(text)
fillers = []
i = 0
for sent in sentences:
start_idx = text.find(sent, i)
if ignore_errors and start_idx == -1:
start_idx = i + 1
assert start_idx != -1, f"Sent not found after index {i} in text: {text}"
fillers.append(text[i:start_idx])
i = start_idx + len(sent)
fillers.append(text[i:])
return sentences, fillers
def clean_text(text: str, lang) -> str:
replace_nonprint = get_non_printing_char_replacer()
text = replace_nonprint(text)
text = common_clean_methods(text)
if lang == "xcl_Armn":
text = wa_clean_methods(text)
return text
def init_tokenizer(tokenizer, new_langs=["xcl_Armn"]):
""" Add multiple new language tokens to the tokenizer vocabulary (this should be done each time after its initialization) """
for new_lang in new_langs:
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = new_lang
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
# always move "mask" to the last position
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
# clear the added token encoder; otherwise a new token may end up there by mistake
tokenizer.added_tokens_encoder = {} # <- these only work with transformers==4.33.0
tokenizer.added_tokens_decoder = {}
return tokenizer
# def init_tokenizer(tokenizer, new_lang='xcl_Armn'):
# """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
# old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
# tokenizer.lang_code_to_id[new_lang] = old_len-1
# tokenizer.id_to_lang_code[old_len-1] = new_lang
# # always move "mask" to the last position
# tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
# tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
# tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
# if new_lang not in tokenizer._additional_special_tokens:
# tokenizer._additional_special_tokens.append(new_lang)
# # clear the added token encoder; otherwise a new token may end up there by mistake
# tokenizer.added_tokens_encoder = {}
# tokenizer.added_tokens_decoder = {}
class Translator:
def __init__(self) -> None:
self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, token=HF_TOKEN)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.tokenizer = NllbTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
init_tokenizer(self.tokenizer)
self.hyw_splitter = pysbd.Segmenter(language="hy", clean=True)
self.eng_splitter = pysbd.Segmenter(language="en", clean=True)
self.languages = LANGUAGES
def translate_single(
self,
text,
src_lang,
tgt_lang,
max_length="auto",
num_beams=4,
n_out=None,
**kwargs,
):
self.tokenizer.src_lang = src_lang
encoded = self.tokenizer(
text, return_tensors="pt", truncation=True, max_length=256
)
if max_length == "auto":
max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
generated_tokens = self.model.generate(
**encoded.to(self.model.device),
forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang],
max_length=max_length,
num_beams=num_beams,
num_return_sequences=n_out or 1,
**kwargs,
)
out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
if isinstance(text, str) and n_out is None:
return out[0]
return out
def translate(self, text: str,
src_lang: str,
tgt_lang: str,
max_length=256,
num_beams=4,
by_sentence=True,
clean=True,
**kwargs):
# Split into paragraphs
paragraphs = text.split('\n')
translated_paragraphs = []
for paragraph in paragraphs:
if not paragraph.strip():
translated_paragraphs.append('')
continue
if by_sentence:
if src_lang == "eng_Latn":
sents = self.eng_splitter.segment(paragraph)
elif src_lang == "xcl_Armn":
sents = self.hyw_splitter.segment(paragraph)
if clean:
sents = [clean_text(sent, src_lang) for sent in sents]
if len(sents) > 1:
results = self.translate_batch(sents, src_lang, tgt_lang,
num_beams=num_beams,
max_length=max_length, **kwargs)
else:
results = [self.translate_single(sents[0], src_lang, tgt_lang,
max_length=max_length,
num_beams=num_beams, **kwargs)]
translated_paragraphs.append(" ".join(results))
else:
if clean:
paragraph = clean_text(paragraph, src_lang)
translated = self.translate_single(paragraph, src_lang, tgt_lang,
max_length=max_length,
num_beams=num_beams, **kwargs)
translated_paragraphs.append(translated)
# Reconstruct with original paragraph structure
return "\n".join(translated_paragraphs)
def translate_batch(self, texts, src_lang, tgt_lang, num_beams=4, max_length=256, **kwargs):
self.tokenizer.src_lang = src_lang
if torch.cuda.is_available():
inputs = self.tokenizer(texts, return_tensors="pt", max_length=max_length, padding=True, truncation=True).input_ids.to("cuda")
translated_tokens = self.model.generate(inputs, num_beams=num_beams, forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang])
else:
inputs = self.tokenizer(texts, return_tensors="pt", max_length=max_length, padding=True, truncation=True)
translated_tokens = self.model.generate(**inputs, num_beams=num_beams, forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang])
return self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
if __name__ == "__main__":
print("Initializing translator...")
translator = Translator()
print("Translator initialized.")
start_time = time.time()
print(translator.translate("Hello world!", "eng_Latn", "xcl_Armn"))
print("Time elapsed: ", time.time() - start_time)
start_time = time.time()
print(translator.translate("I am the greatest translator! Do not fuck with me!", "eng_Latn", "xcl_Armn"))
print("Time elapsed: ", time.time() - start_time) |