Ariamehr commited on
Commit
438f69f
·
verified ·
1 Parent(s): 7a68b18

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
3
+ import torch
4
+ import librosa
5
+
6
+ # Model details
7
+ models = {
8
+ "m3hrdadfi/wav2vec2-large-xlsr-persian-v3": None,
9
+ "jonatasgrosman/wav2vec2-large-xlsr-53-persian": None,
10
+ "AlirezaSaei/wav2vec2-large-xlsr-persian-fine-tuned": None
11
+ }
12
+
13
+ # Load models and processors
14
+ def load_model(model_name):
15
+ model = Wav2Vec2ForCTC.from_pretrained(model_name)
16
+ processor = Wav2Vec2Processor.from_pretrained(model_name)
17
+ return model, processor
18
+
19
+ def transcribe(audio, model_name):
20
+ if models[model_name] is None:
21
+ models[model_name] = load_model(model_name)
22
+ model, processor = models[model_name]
23
+
24
+ audio_data, _ = librosa.load(audio, sr=16000)
25
+ input_values = processor(audio_data, sampling_rate=16000, return_tensors="pt", padding=True).input_values
26
+
27
+ with torch.no_grad():
28
+ logits = model(input_values).logits
29
+
30
+ predicted_ids = torch.argmax(logits, dim=-1)
31
+ transcription = processor.batch_decode(predicted_ids)[0]
32
+ return transcription
33
+
34
+ # Gradio app
35
+ with gr.Blocks(theme="compact") as demo:
36
+ gr.Markdown("""
37
+ <h1 style="color: #4CAF50; text-align: center;">Persian Speech-to-Text Models</h1>
38
+ <p style="text-align: center;">Test the best Persian STT models in one place!</p>
39
+ """)
40
+
41
+ with gr.Row():
42
+ audio_input = gr.Audio(source="upload", type="filepath", label="Upload your audio file")
43
+ model_dropdown = gr.Dropdown(
44
+ choices=list(models.keys()),
45
+ label="Select Model",
46
+ value="m3hrdadfi/wav2vec2-large-xlsr-persian-v3"
47
+ )
48
+
49
+ output_text = gr.Textbox(label="Transcription", lines=5, placeholder="The transcription will appear here...")
50
+
51
+ transcribe_button = gr.Button("Transcribe", variant="primary")
52
+
53
+ transcribe_button.click(
54
+ fn=transcribe,
55
+ inputs=[audio_input, model_dropdown],
56
+ outputs=output_text
57
+ )
58
+
59
+ gr.Markdown("""
60
+ <footer style="text-align: center; margin-top: 20px;">
61
+ <p>Created with ❤️ using Gradio and Hugging Face</p>
62
+ </footer>
63
+ """)
64
+
65
+ demo.launch()