Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
|
6 |
+
# Model details
|
7 |
+
models = {
|
8 |
+
"m3hrdadfi/wav2vec2-large-xlsr-persian-v3": None,
|
9 |
+
"jonatasgrosman/wav2vec2-large-xlsr-53-persian": None,
|
10 |
+
"AlirezaSaei/wav2vec2-large-xlsr-persian-fine-tuned": None
|
11 |
+
}
|
12 |
+
|
13 |
+
# Load models and processors
|
14 |
+
def load_model(model_name):
|
15 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
16 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
17 |
+
return model, processor
|
18 |
+
|
19 |
+
def transcribe(audio, model_name):
|
20 |
+
if models[model_name] is None:
|
21 |
+
models[model_name] = load_model(model_name)
|
22 |
+
model, processor = models[model_name]
|
23 |
+
|
24 |
+
audio_data, _ = librosa.load(audio, sr=16000)
|
25 |
+
input_values = processor(audio_data, sampling_rate=16000, return_tensors="pt", padding=True).input_values
|
26 |
+
|
27 |
+
with torch.no_grad():
|
28 |
+
logits = model(input_values).logits
|
29 |
+
|
30 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
31 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
32 |
+
return transcription
|
33 |
+
|
34 |
+
# Gradio app
|
35 |
+
with gr.Blocks(theme="compact") as demo:
|
36 |
+
gr.Markdown("""
|
37 |
+
<h1 style="color: #4CAF50; text-align: center;">Persian Speech-to-Text Models</h1>
|
38 |
+
<p style="text-align: center;">Test the best Persian STT models in one place!</p>
|
39 |
+
""")
|
40 |
+
|
41 |
+
with gr.Row():
|
42 |
+
audio_input = gr.Audio(source="upload", type="filepath", label="Upload your audio file")
|
43 |
+
model_dropdown = gr.Dropdown(
|
44 |
+
choices=list(models.keys()),
|
45 |
+
label="Select Model",
|
46 |
+
value="m3hrdadfi/wav2vec2-large-xlsr-persian-v3"
|
47 |
+
)
|
48 |
+
|
49 |
+
output_text = gr.Textbox(label="Transcription", lines=5, placeholder="The transcription will appear here...")
|
50 |
+
|
51 |
+
transcribe_button = gr.Button("Transcribe", variant="primary")
|
52 |
+
|
53 |
+
transcribe_button.click(
|
54 |
+
fn=transcribe,
|
55 |
+
inputs=[audio_input, model_dropdown],
|
56 |
+
outputs=output_text
|
57 |
+
)
|
58 |
+
|
59 |
+
gr.Markdown("""
|
60 |
+
<footer style="text-align: center; margin-top: 20px;">
|
61 |
+
<p>Created with ❤️ using Gradio and Hugging Face</p>
|
62 |
+
</footer>
|
63 |
+
""")
|
64 |
+
|
65 |
+
demo.launch()
|