anyantudre's picture
update app.py for dowload from HF
44efd89
raw
history blame
4.38 kB
import os
import cv2
import torch
import numpy as np
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
from training.detectors import DETECTOR
import yaml
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# available models in the repository
AVAILABLE_MODELS = [
"xception",
"ucf",
]
# load the model
def load_model(model_name, config_path, weights_path):
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
config['model_name'] = model_name
model_class = DETECTOR[model_name]
model = model_class(config).to(device)
checkpoint = torch.load(weights_path, map_location=device)
model.load_state_dict(checkpoint, strict=True)
model.eval()
return model
# preprocess a single video
def preprocess_video(video_path, output_dir, frame_num=32):
os.makedirs(output_dir, exist_ok=True)
frames_dir = os.path.join(output_dir, "frames")
os.makedirs(frames_dir, exist_ok=True)
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_indices = np.linspace(0, total_frames - 1, frame_num, dtype=int)
# extract frames
frames = []
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
frame_path = os.path.join(frames_dir, f"frame_{idx:04d}.png")
cv2.imwrite(frame_path, frame)
frames.append(frame_path)
cap.release()
return frames
# inference on a single video
def infer_video(video_path, model, device):
# Preprocess the video
output_dir = "temp_video_frames"
frames = preprocess_video(video_path, output_dir)
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
probs = []
for frame_path in frames:
frame = Image.open(frame_path).convert("RGB")
frame = transform(frame).unsqueeze(0).to(device)
data_dict = {
"image": frame,
"label": torch.tensor([0]).to(device), # Dummy label
"label_spe": torch.tensor([0]).to(device), # Dummy specific label
}
with torch.no_grad():
pred_dict = model(data_dict, inference=True)
logits = pred_dict["cls"] # Shape: [batch_size, num_classes]
prob = torch.softmax(logits, dim=1)[:, 1].item() # Probability of being "fake"
probs.append(prob)
# aggregate predictions (e.g., average probability)
avg_prob = np.mean(probs)
prediction = "Fake" if avg_prob > 0.5 else "Real"
return prediction, avg_prob
# gradio inference function
def gradio_inference(video, model_name):
config_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/config/detector/{model_name}.yaml"
weights_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/weights/{model_name}_best.pth"
if not os.path.exists(config_path):
return f"Error: Config file for model '{model_name}' not found at {config_path}."
if not os.path.exists(weights_path):
return f"Error: Weights file for model '{model_name}' not found at {weights_path}."
model = load_model(model_name, config_path, weights_path)
prediction, confidence = infer_video(video, model, device)
return f"Model: {model_name}\nPrediction: {prediction} (Confidence: {confidence:.4f})"
# Gradio App
def create_gradio_app():
with gr.Blocks() as demo:
gr.Markdown("# Deepfake Detection Demo")
gr.Markdown("Upload a video and select a model to detect if it's real or fake.")
with gr.Row():
video_input = gr.Video(label="Upload Video")
model_dropdown = gr.Dropdown(choices=AVAILABLE_MODELS, label="Select Model", value="xception")
output_text = gr.Textbox(label="Prediction Result")
submit_button = gr.Button("Run Inference")
submit_button.click(
fn=gradio_inference,
inputs=[video_input, model_dropdown],
outputs=output_text,
)
return demo
if __name__ == "__main__":
demo = create_gradio_app()
demo.launch(share=True)