File size: 26,202 Bytes
78d1101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import logging
import os
import re
from glob import glob
from typing import Dict, List

import librosa
import numpy as np
import torch
import torchaudio
import tqdm
from encodec.utils import convert_audio
from scipy.special import softmax
from torch.nn import functional as F

from TTS.tts.layers.bark.hubert.hubert_manager import HubertManager
from TTS.tts.layers.bark.hubert.kmeans_hubert import CustomHubert
from TTS.tts.layers.bark.hubert.tokenizer import HubertTokenizer
from TTS.tts.layers.bark.load_model import clear_cuda_cache, inference_mode

logger = logging.getLogger(__name__)


def _tokenize(tokenizer, text):
    return tokenizer.encode(text, add_special_tokens=False)


def _detokenize(tokenizer, enc_text):
    return tokenizer.decode(enc_text)


def _normalize_whitespace(text):
    return re.sub(r"\s+", " ", text).strip()


def get_voices(extra_voice_dirs: List[str] = []):  # pylint: disable=dangerous-default-value
    dirs = extra_voice_dirs
    voices: Dict[str, List[str]] = {}
    for d in dirs:
        subs = os.listdir(d)
        for sub in subs:
            subj = os.path.join(d, sub)
            if os.path.isdir(subj):
                voices[sub] = list(glob(f"{subj}/*.npz"))
                # fetch audio files if no npz files are found
                if len(voices[sub]) == 0:
                    voices[sub] = list(glob(f"{subj}/*.wav")) + list(glob(f"{subj}/*.mp3"))
    return voices


def load_npz(npz_file):
    x_history = np.load(npz_file)
    semantic = x_history["semantic_prompt"]
    coarse = x_history["coarse_prompt"]
    fine = x_history["fine_prompt"]
    return semantic, coarse, fine


def load_voice(model, voice: str, extra_voice_dirs: List[str] = []):  # pylint: disable=dangerous-default-value
    if voice == "random":
        return None, None, None

    voices = get_voices(extra_voice_dirs)
    paths = voices[voice]

    # bark only uses a single sample for cloning
    if len(paths) > 1:
        raise ValueError(f"Voice {voice} has multiple paths: {paths}")

    try:
        path = voices[voice]
    except KeyError as e:
        raise KeyError(f"Voice {voice} not found in {extra_voice_dirs}") from e

    if len(paths) == 1 and paths[0].endswith(".npz"):
        return load_npz(path[0])

    audio_path = paths[0]
    # replace the file extension with .npz
    output_path = os.path.splitext(audio_path)[0] + ".npz"
    generate_voice(audio=audio_path, model=model, output_path=output_path)
    return load_voice(model, voice, extra_voice_dirs)


def zero_crossing_rate(audio, frame_length=1024, hop_length=512):
    zero_crossings = np.sum(np.abs(np.diff(np.sign(audio))) / 2)
    total_frames = 1 + int((len(audio) - frame_length) / hop_length)
    return zero_crossings / total_frames


def compute_spectral_contrast(audio_data, sample_rate, n_bands=6, fmin=200.0):
    spectral_contrast = librosa.feature.spectral_contrast(y=audio_data, sr=sample_rate, n_bands=n_bands, fmin=fmin)
    return np.mean(spectral_contrast)


def compute_average_bass_energy(audio_data, sample_rate, max_bass_freq=250):
    stft = librosa.stft(audio_data)
    power_spectrogram = np.abs(stft) ** 2
    frequencies = librosa.fft_frequencies(sr=sample_rate, n_fft=stft.shape[0])
    bass_mask = frequencies <= max_bass_freq
    bass_energy = power_spectrogram[np.ix_(bass_mask, np.arange(power_spectrogram.shape[1]))].mean()
    return bass_energy


def generate_voice(
    audio,
    model,
    output_path,
):
    """Generate a new voice from a given audio and text prompt.

    Args:
        audio (np.ndarray): The audio to use as a base for the new voice.
        text (str): Transcription of the audio you are clonning.
        model (BarkModel): The BarkModel to use for generating the new voice.
        output_path (str): The path to save the generated voice to.
    """
    if isinstance(audio, str):
        audio, sr = torchaudio.load(audio)
        audio = convert_audio(audio, sr, model.config.sample_rate, model.encodec.channels)
        audio = audio.unsqueeze(0).to(model.device)

    with torch.no_grad():
        encoded_frames = model.encodec.encode(audio)
    codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze()  # [n_q, T]

    # move codes to cpu
    codes = codes.cpu().numpy()

    # generate semantic tokens
    # Load the HuBERT model
    hubert_manager = HubertManager()
    # hubert_manager.make_sure_hubert_installed(model_path=model.config.LOCAL_MODEL_PATHS["hubert"])
    hubert_manager.make_sure_tokenizer_installed(model_path=model.config.LOCAL_MODEL_PATHS["hubert_tokenizer"])

    hubert_model = CustomHubert(checkpoint_path=model.config.LOCAL_MODEL_PATHS["hubert"]).to(model.device)

    # Load the CustomTokenizer model
    tokenizer = HubertTokenizer.load_from_checkpoint(
        model.config.LOCAL_MODEL_PATHS["hubert_tokenizer"], map_location=model.device
    )
    # semantic_tokens = model.text_to_semantic(
    #     text, max_gen_duration_s=seconds, top_k=50, top_p=0.95, temp=0.7
    # )  # not 100%
    semantic_vectors = hubert_model.forward(audio[0], input_sample_hz=model.config.sample_rate)
    semantic_tokens = tokenizer.get_token(semantic_vectors)
    semantic_tokens = semantic_tokens.cpu().numpy()

    np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens)


def generate_text_semantic(
    text,
    model,
    history_prompt=None,
    temp=0.7,
    top_k=None,
    top_p=None,
    silent=False,
    min_eos_p=0.2,
    max_gen_duration_s=None,
    allow_early_stop=True,
    base=None,
    use_kv_caching=True,
    **kwargs,  # pylint: disable=unused-argument
):
    """Generate semantic tokens from text.

    Args:
        text (str): The text to generate semantic tokens from.
        model (BarkModel): The BarkModel to use for generating the semantic tokens.
        history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation.
        temp (float): The temperature to use for the generation.
        top_k (int): The number of top tokens to consider for the generation.
        top_p (float): The cumulative probability to consider for the generation.
        silent (bool): Whether to silence the tqdm progress bar.
        min_eos_p (float): The minimum probability to consider for the end of sentence token.
        max_gen_duration_s (float): The maximum duration in seconds to generate for.
        allow_early_stop (bool): Whether to allow the generation to stop early.
        base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation.
        use_kv_caching (bool): Whether to use key-value caching for the generation.
        **kwargs: Additional keyword arguments. They are ignored.

    Returns:
        np.ndarray: The generated semantic tokens.
    """
    assert isinstance(text, str)
    text = _normalize_whitespace(text)
    assert len(text.strip()) > 0
    if all(v is not None for v in history_prompt) or base is not None:
        if history_prompt is not None:
            semantic_history = history_prompt[0]
        if base is not None:
            semantic_history = base[0]
        assert (
            isinstance(semantic_history, np.ndarray)
            and len(semantic_history.shape) == 1
            and len(semantic_history) > 0
            and semantic_history.min() >= 0
            and semantic_history.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1
        )
    else:
        semantic_history = None
    encoded_text = np.array(_tokenize(model.tokenizer, text)) + model.config.TEXT_ENCODING_OFFSET
    if len(encoded_text) > 256:
        p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
        logger.warning(f"warning, text too long, lopping of last {p}%")
        encoded_text = encoded_text[:256]
    encoded_text = np.pad(
        encoded_text,
        (0, 256 - len(encoded_text)),
        constant_values=model.config.TEXT_PAD_TOKEN,
        mode="constant",
    )
    if semantic_history is not None:
        semantic_history = semantic_history.astype(np.int64)
        # lop off if history is too long, pad if needed
        semantic_history = semantic_history[-256:]
        semantic_history = np.pad(
            semantic_history,
            (0, 256 - len(semantic_history)),
            constant_values=model.config.SEMANTIC_PAD_TOKEN,
            mode="constant",
        )
    else:
        semantic_history = np.array([model.config.SEMANTIC_PAD_TOKEN] * 256)
    x = torch.from_numpy(
        np.hstack([encoded_text, semantic_history, np.array([model.config.SEMANTIC_INFER_TOKEN])]).astype(np.int64)
    )[None]
    assert x.shape[1] == 256 + 256 + 1
    with inference_mode():
        x = x.to(model.device)
        n_tot_steps = 768
        # custom tqdm updates since we don't know when eos will occur
        pbar = tqdm.tqdm(disable=silent, total=100)
        pbar_state = 0
        tot_generated_duration_s = 0
        kv_cache = None
        for n in range(n_tot_steps):
            if use_kv_caching and kv_cache is not None:
                x_input = x[:, [-1]]
            else:
                x_input = x
            logits, kv_cache = model.semantic_model(
                x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
            )
            relevant_logits = logits[0, 0, : model.config.SEMANTIC_VOCAB_SIZE]
            if allow_early_stop:
                relevant_logits = torch.hstack(
                    (relevant_logits, logits[0, 0, [model.config.SEMANTIC_PAD_TOKEN]])
                )  # eos
            if top_p is not None:
                # faster to convert to numpy
                logits_device = relevant_logits.device
                logits_dtype = relevant_logits.type()
                relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
                sorted_indices = np.argsort(relevant_logits)[::-1]
                sorted_logits = relevant_logits[sorted_indices]
                cumulative_probs = np.cumsum(softmax(sorted_logits))
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
                sorted_indices_to_remove[0] = False
                relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
                relevant_logits = torch.from_numpy(relevant_logits)
                relevant_logits = relevant_logits.to(logits_device).type(logits_dtype)
            if top_k is not None:
                v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
                relevant_logits[relevant_logits < v[-1]] = -float("Inf")
            probs = torch.softmax(relevant_logits / temp, dim=-1)
            item_next = torch.multinomial(probs, num_samples=1)
            if allow_early_stop and (
                item_next == model.config.SEMANTIC_VOCAB_SIZE or (min_eos_p is not None and probs[-1] >= min_eos_p)
            ):
                # eos found, so break
                pbar.update(100 - pbar_state)
                break
            x = torch.cat((x, item_next[None]), dim=1)
            tot_generated_duration_s += 1 / model.config.SEMANTIC_RATE_HZ
            if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
                pbar.update(100 - pbar_state)
                break
            if n == n_tot_steps - 1:
                pbar.update(100 - pbar_state)
                break
            del logits, relevant_logits, probs, item_next
            req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))])
            if req_pbar_state > pbar_state:
                pbar.update(req_pbar_state - pbar_state)
            pbar_state = req_pbar_state
        pbar.close()
        out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
    assert all(out >= 0) and all(out < model.config.SEMANTIC_VOCAB_SIZE)
    clear_cuda_cache()
    return out


def _flatten_codebooks(arr, offset_size):
    assert len(arr.shape) == 2
    arr = arr.copy()
    if offset_size is not None:
        for n in range(1, arr.shape[0]):
            arr[n, :] += offset_size * n
    flat_arr = arr.ravel("F")
    return flat_arr


def generate_coarse(
    x_semantic,
    model,
    history_prompt=None,
    temp=0.7,
    top_k=None,
    top_p=None,
    silent=False,
    max_coarse_history=630,  # min 60 (faster), max 630 (more context)
    sliding_window_len=60,
    base=None,
    use_kv_caching=True,
):
    """Generate coarse audio codes from semantic tokens.

    Args:
        x_semantic (np.ndarray): The semantic tokens to generate coarse audio codes from.
        model (BarkModel): The BarkModel to use for generating the coarse audio codes.
        history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation.
        temp (float): The temperature to use for the generation.
        top_k (int): The number of top tokens to consider for the generation.
        top_p (float): The cumulative probability to consider for the generation.
        silent (bool): Whether to silence the tqdm progress bar.
        max_coarse_history (int): The maximum number of coarse audio codes to use as history.
        sliding_window_len (int): The length of the sliding window to use for the generation.
        base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation.
        use_kv_caching (bool): Whether to use key-value caching for the generation.

    Returns:
        np.ndarray: The generated coarse audio codes.
    """
    assert (
        isinstance(x_semantic, np.ndarray)
        and len(x_semantic.shape) == 1
        and len(x_semantic) > 0
        and x_semantic.min() >= 0
        and x_semantic.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1
    )
    assert 60 <= max_coarse_history <= 630
    assert max_coarse_history + sliding_window_len <= 1024 - 256
    semantic_to_coarse_ratio = (
        model.config.COARSE_RATE_HZ / model.config.SEMANTIC_RATE_HZ * model.config.N_COARSE_CODEBOOKS
    )
    max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
    if all(v is not None for v in history_prompt) or base is not None:
        if history_prompt is not None:
            x_history = history_prompt
            x_semantic_history = x_history[0]
            x_coarse_history = x_history[1]
        if base is not None:
            x_semantic_history = base[0]
            x_coarse_history = base[1]
        assert (
            isinstance(x_semantic_history, np.ndarray)
            and len(x_semantic_history.shape) == 1
            and len(x_semantic_history) > 0
            and x_semantic_history.min() >= 0
            and x_semantic_history.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1
            and isinstance(x_coarse_history, np.ndarray)
            and len(x_coarse_history.shape) == 2
            and x_coarse_history.shape[0] == model.config.N_COARSE_CODEBOOKS
            and x_coarse_history.shape[-1] >= 0
            and x_coarse_history.min() >= 0
            and x_coarse_history.max() <= model.config.CODEBOOK_SIZE - 1
            and (
                round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
                == round(semantic_to_coarse_ratio / model.config.N_COARSE_CODEBOOKS, 1)
            )
        )
        x_coarse_history = (
            _flatten_codebooks(x_coarse_history, model.config.CODEBOOK_SIZE) + model.config.SEMANTIC_VOCAB_SIZE
        )
        # trim histories correctly
        n_semantic_hist_provided = np.min(
            [
                max_semantic_history,
                len(x_semantic_history) - len(x_semantic_history) % 2,
                int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
            ]
        )
        n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
        x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
        x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
        # TODO: bit of a hack for time alignment (sounds better)
        x_coarse_history = x_coarse_history[:-2]
    else:
        x_semantic_history = np.array([], dtype=np.int32)
        x_coarse_history = np.array([], dtype=np.int32)
    # start loop
    n_steps = int(
        round(
            np.floor(len(x_semantic) * semantic_to_coarse_ratio / model.config.N_COARSE_CODEBOOKS)
            * model.config.N_COARSE_CODEBOOKS
        )
    )
    assert n_steps > 0 and n_steps % model.config.N_COARSE_CODEBOOKS == 0
    x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
    x_coarse = x_coarse_history.astype(np.int32)
    base_semantic_idx = len(x_semantic_history)
    with inference_mode():
        x_semantic_in = torch.from_numpy(x_semantic)[None].to(model.device)
        x_coarse_in = torch.from_numpy(x_coarse)[None].to(model.device)
        n_window_steps = int(np.ceil(n_steps / sliding_window_len))
        n_step = 0
        for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
            semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
            # pad from right side
            x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :]
            x_in = x_in[:, :256]
            x_in = F.pad(
                x_in,
                (0, 256 - x_in.shape[-1]),
                "constant",
                model.config.COARSE_SEMANTIC_PAD_TOKEN,
            )
            x_in = torch.hstack(
                [
                    x_in,
                    torch.tensor([model.config.COARSE_INFER_TOKEN])[None].to(model.device),
                    x_coarse_in[:, -max_coarse_history:],
                ]
            )
            kv_cache = None
            for _ in range(sliding_window_len):
                if n_step >= n_steps:
                    continue
                is_major_step = n_step % model.config.N_COARSE_CODEBOOKS == 0

                if use_kv_caching and kv_cache is not None:
                    x_input = x_in[:, [-1]]
                else:
                    x_input = x_in

                logits, kv_cache = model.coarse_model(x_input, use_cache=use_kv_caching, past_kv=kv_cache)
                logit_start_idx = (
                    model.config.SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * model.config.CODEBOOK_SIZE
                )
                logit_end_idx = model.config.SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * model.config.CODEBOOK_SIZE
                relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
                if top_p is not None:
                    # faster to convert to numpy
                    logits_device = relevant_logits.device
                    logits_dtype = relevant_logits.type()
                    relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
                    sorted_indices = np.argsort(relevant_logits)[::-1]
                    sorted_logits = relevant_logits[sorted_indices]
                    cumulative_probs = np.cumsum(torch.nn.functional.softmax(sorted_logits))
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
                    sorted_indices_to_remove[0] = False
                    relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
                    relevant_logits = torch.from_numpy(relevant_logits)
                    relevant_logits = relevant_logits.to(logits_device).type(logits_dtype)
                if top_k is not None:
                    v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
                    relevant_logits[relevant_logits < v[-1]] = -float("Inf")
                probs = torch.nn.functional.softmax(relevant_logits / temp, dim=-1)
                item_next = torch.multinomial(probs, num_samples=1)
                item_next += logit_start_idx
                x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1)
                x_in = torch.cat((x_in, item_next[None]), dim=1)
                del logits, relevant_logits, probs, item_next
                n_step += 1
            del x_in
        del x_semantic_in
    gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
    del x_coarse_in
    assert len(gen_coarse_arr) == n_steps
    gen_coarse_audio_arr = (
        gen_coarse_arr.reshape(-1, model.config.N_COARSE_CODEBOOKS).T - model.config.SEMANTIC_VOCAB_SIZE
    )
    for n in range(1, model.config.N_COARSE_CODEBOOKS):
        gen_coarse_audio_arr[n, :] -= n * model.config.CODEBOOK_SIZE
    clear_cuda_cache()
    return gen_coarse_audio_arr


def generate_fine(
    x_coarse_gen,
    model,
    history_prompt=None,
    temp=0.5,
    silent=True,
    base=None,
):
    """Generate full audio codes from coarse audio codes.

    Args:
        x_coarse_gen (np.ndarray): The coarse audio codes to generate full audio codes from.
        model (BarkModel): The BarkModel to use for generating the full audio codes.
        history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation.
        temp (float): The temperature to use for the generation.
        silent (bool): Whether to silence the tqdm progress bar.
        base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation.

    Returns:
        np.ndarray: The generated full audio codes.
    """
    assert (
        isinstance(x_coarse_gen, np.ndarray)
        and len(x_coarse_gen.shape) == 2
        and 1 <= x_coarse_gen.shape[0] <= model.config.N_FINE_CODEBOOKS - 1
        and x_coarse_gen.shape[1] > 0
        and x_coarse_gen.min() >= 0
        and x_coarse_gen.max() <= model.config.CODEBOOK_SIZE - 1
    )
    if all(v is not None for v in history_prompt) or base is not None:
        if history_prompt is not None:
            x_fine_history = history_prompt[2]
        if base is not None:
            x_fine_history = base[2]
        assert (
            isinstance(x_fine_history, np.ndarray)
            and len(x_fine_history.shape) == 2
            and x_fine_history.shape[0] == model.config.N_FINE_CODEBOOKS
            and x_fine_history.shape[1] >= 0
            and x_fine_history.min() >= 0
            and x_fine_history.max() <= model.config.CODEBOOK_SIZE - 1
        )
    else:
        x_fine_history = None
    n_coarse = x_coarse_gen.shape[0]
    # make input arr
    in_arr = np.vstack(
        [
            x_coarse_gen,
            np.zeros((model.config.N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1]))
            + model.config.CODEBOOK_SIZE,  # padding
        ]
    ).astype(np.int32)
    # prepend history if available (max 512)
    if x_fine_history is not None:
        x_fine_history = x_fine_history.astype(np.int32)
        in_arr = np.hstack(
            [
                x_fine_history[:, -512:].astype(np.int32),
                in_arr,
            ]
        )
        n_history = x_fine_history[:, -512:].shape[1]
    else:
        n_history = 0
    n_remove_from_end = 0
    # need to pad if too short (since non-causal model)
    if in_arr.shape[1] < 1024:
        n_remove_from_end = 1024 - in_arr.shape[1]
        in_arr = np.hstack(
            [
                in_arr,
                np.zeros((model.config.N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32)
                + model.config.CODEBOOK_SIZE,
            ]
        )
    # we can be lazy about fractional loop and just keep overwriting codebooks
    n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1
    with inference_mode():
        in_arr = torch.tensor(in_arr.T).to(model.device)
        for n in tqdm.tqdm(range(n_loops), disable=silent):
            start_idx = np.min([n * 512, in_arr.shape[0] - 1024])
            start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512])
            rel_start_fill_idx = start_fill_idx - start_idx
            in_buffer = in_arr[start_idx : start_idx + 1024, :][None]
            for nn in range(n_coarse, model.config.N_FINE_CODEBOOKS):
                logits = model.fine_model(nn, in_buffer)
                if temp is None:
                    relevant_logits = logits[0, rel_start_fill_idx:, : model.config.CODEBOOK_SIZE]
                    codebook_preds = torch.argmax(relevant_logits, -1)
                else:
                    relevant_logits = logits[0, :, : model.config.CODEBOOK_SIZE] / temp
                    probs = F.softmax(relevant_logits, dim=-1)
                    codebook_preds = torch.hstack(
                        [torch.multinomial(probs[n], num_samples=1) for n in range(rel_start_fill_idx, 1024)]
                    )
                in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds
                del logits, codebook_preds
            # transfer over info into model_in and convert to numpy
            for nn in range(n_coarse, model.config.N_FINE_CODEBOOKS):
                in_arr[start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn] = in_buffer[
                    0, rel_start_fill_idx:, nn
                ]
            del in_buffer
        gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
        del in_arr
    gen_fine_arr = gen_fine_arr[:, n_history:]
    if n_remove_from_end > 0:
        gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
    assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1]
    clear_cuda_cache()
    return gen_fine_arr


def codec_decode(fine_tokens, model):
    """Turn quantized audio codes into audio array using encodec."""
    arr = torch.from_numpy(fine_tokens)[None]
    arr = arr.to(model.device)
    arr = arr.transpose(0, 1)
    emb = model.encodec.quantizer.decode(arr)
    out = model.encodec.decoder(emb)
    audio_arr = out.detach().cpu().numpy().squeeze()
    return audio_arr