File size: 35,611 Bytes
78d1101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
import math

import numpy as np
import torch
from coqpit import Coqpit
from torch import nn
from torch.nn import functional

from TTS.tts.utils.helpers import sequence_mask
from TTS.tts.utils.ssim import SSIMLoss as _SSIMLoss
from TTS.utils.audio.torch_transforms import TorchSTFT


# pylint: disable=abstract-method
# relates https://github.com/pytorch/pytorch/issues/42305
class L1LossMasked(nn.Module):
    def __init__(self, seq_len_norm):
        super().__init__()
        self.seq_len_norm = seq_len_norm

    def forward(self, x, target, length):
        """
        Args:
            x: A Variable containing a FloatTensor of size
                (batch, max_len, dim) which contains the
                unnormalized probability for each class.
            target: A Variable containing a LongTensor of size
                (batch, max_len, dim) which contains the index of the true
                class for each corresponding step.
            length: A Variable containing a LongTensor of size (batch,)
                which contains the length of each data in a batch.
        Shapes:
            x: B x T X D
            target: B x T x D
            length: B
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        # mask: (batch, max_len, 1)
        target.requires_grad = False
        mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
        if self.seq_len_norm:
            norm_w = mask / mask.sum(dim=1, keepdim=True)
            out_weights = norm_w.div(target.shape[0] * target.shape[2])
            mask = mask.expand_as(x)
            loss = functional.l1_loss(x * mask, target * mask, reduction="none")
            loss = loss.mul(out_weights.to(loss.device)).sum()
        else:
            mask = mask.expand_as(x)
            loss = functional.l1_loss(x * mask, target * mask, reduction="sum")
            loss = loss / mask.sum()
        return loss


class MSELossMasked(nn.Module):
    def __init__(self, seq_len_norm):
        super().__init__()
        self.seq_len_norm = seq_len_norm

    def forward(self, x, target, length):
        """
        Args:
            x: A Variable containing a FloatTensor of size
                (batch, max_len, dim) which contains the
                unnormalized probability for each class.
            target: A Variable containing a LongTensor of size
                (batch, max_len, dim) which contains the index of the true
                class for each corresponding step.
            length: A Variable containing a LongTensor of size (batch,)
                which contains the length of each data in a batch.
        Shapes:
            - x: :math:`[B, T, D]`
            - target: :math:`[B, T, D]`
            - length: :math:`B`
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        # mask: (batch, max_len, 1)
        target.requires_grad = False
        mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
        if self.seq_len_norm:
            norm_w = mask / mask.sum(dim=1, keepdim=True)
            out_weights = norm_w.div(target.shape[0] * target.shape[2])
            mask = mask.expand_as(x)
            loss = functional.mse_loss(x * mask, target * mask, reduction="none")
            loss = loss.mul(out_weights.to(loss.device)).sum()
        else:
            mask = mask.expand_as(x)
            loss = functional.mse_loss(x * mask, target * mask, reduction="sum")
            loss = loss / mask.sum()
        return loss


def sample_wise_min_max(x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
    """Min-Max normalize tensor through first dimension
    Shapes:
        - x: :math:`[B, D1, D2]`
        - m: :math:`[B, D1, 1]`
    """
    maximum = torch.amax(x.masked_fill(~mask, 0), dim=(1, 2), keepdim=True)
    minimum = torch.amin(x.masked_fill(~mask, np.inf), dim=(1, 2), keepdim=True)
    return (x - minimum) / (maximum - minimum + 1e-8)


class SSIMLoss(torch.nn.Module):
    """SSIM loss as (1 - SSIM)
    SSIM is explained here https://en.wikipedia.org/wiki/Structural_similarity
    """

    def __init__(self):
        super().__init__()
        self.loss_func = _SSIMLoss()

    def forward(self, y_hat, y, length):
        """
        Args:
            y_hat (tensor): model prediction values.
            y (tensor): target values.
            length (tensor): length of each sample in a batch for masking.

        Shapes:
            y_hat: B x T X D
            y: B x T x D
            length: B

         Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2)
        y_norm = sample_wise_min_max(y, mask)
        y_hat_norm = sample_wise_min_max(y_hat, mask)
        ssim_loss = self.loss_func((y_norm * mask).unsqueeze(1), (y_hat_norm * mask).unsqueeze(1))

        if ssim_loss.item() > 1.0:
            print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 1.0")
            ssim_loss = torch.tensor(1.0, device=ssim_loss.device)

        if ssim_loss.item() < 0.0:
            print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 0.0")
            ssim_loss = torch.tensor(0.0, device=ssim_loss.device)

        return ssim_loss


class AttentionEntropyLoss(nn.Module):
    # pylint: disable=R0201
    def forward(self, align):
        """
        Forces attention to be more decisive by penalizing
        soft attention weights
        """
        entropy = torch.distributions.Categorical(probs=align).entropy()
        loss = (entropy / np.log(align.shape[1])).mean()
        return loss


class BCELossMasked(nn.Module):
    """BCE loss with masking.

    Used mainly for stopnet in autoregressive models.

    Args:
        pos_weight (float): weight for positive samples. If set < 1, penalize early stopping. Defaults to None.
    """

    def __init__(self, pos_weight: float = None):
        super().__init__()
        self.register_buffer("pos_weight", torch.tensor([pos_weight]))

    def forward(self, x, target, length):
        """
        Args:
            x: A Variable containing a FloatTensor of size
                (batch, max_len) which contains the
                unnormalized probability for each class.
            target: A Variable containing a LongTensor of size
                (batch, max_len) which contains the index of the true
                class for each corresponding step.
            length: A Variable containing a LongTensor of size (batch,)
                which contains the length of each data in a batch.
        Shapes:
            x: B x T
            target: B x T
            length: B
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        target.requires_grad = False
        if length is not None:
            # mask: (batch, max_len, 1)
            mask = sequence_mask(sequence_length=length, max_len=target.size(1))
            num_items = mask.sum()
            loss = functional.binary_cross_entropy_with_logits(
                x.masked_select(mask),
                target.masked_select(mask),
                pos_weight=self.pos_weight.to(x.device),
                reduction="sum",
            )
        else:
            loss = functional.binary_cross_entropy_with_logits(
                x, target, pos_weight=self.pos_weight.to(x.device), reduction="sum"
            )
            num_items = torch.numel(x)
        loss = loss / num_items
        return loss


class DifferentialSpectralLoss(nn.Module):
    """Differential Spectral Loss
    https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf"""

    def __init__(self, loss_func):
        super().__init__()
        self.loss_func = loss_func

    def forward(self, x, target, length=None):
        """
         Shapes:
            x: B x T
            target: B x T
            length: B
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        x_diff = x[:, 1:] - x[:, :-1]
        target_diff = target[:, 1:] - target[:, :-1]
        if length is None:
            return self.loss_func(x_diff, target_diff)
        return self.loss_func(x_diff, target_diff, length - 1)


class GuidedAttentionLoss(torch.nn.Module):
    def __init__(self, sigma=0.4):
        super().__init__()
        self.sigma = sigma

    def _make_ga_masks(self, ilens, olens):
        B = len(ilens)
        max_ilen = max(ilens)
        max_olen = max(olens)
        ga_masks = torch.zeros((B, max_olen, max_ilen))
        for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
            ga_masks[idx, :olen, :ilen] = self._make_ga_mask(ilen, olen, self.sigma)
        return ga_masks

    def forward(self, att_ws, ilens, olens):
        ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device)
        seq_masks = self._make_masks(ilens, olens).to(att_ws.device)
        losses = ga_masks * att_ws
        loss = torch.mean(losses.masked_select(seq_masks))
        return loss

    @staticmethod
    def _make_ga_mask(ilen, olen, sigma):
        grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen))
        grid_x, grid_y = grid_x.float(), grid_y.float()
        return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma**2)))

    @staticmethod
    def _make_masks(ilens, olens):
        in_masks = sequence_mask(ilens)
        out_masks = sequence_mask(olens)
        return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2)


class Huber(nn.Module):
    # pylint: disable=R0201
    def forward(self, x, y, length=None):
        """
        Shapes:
            x: B x T
            y: B x T
            length: B
        """
        mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2).float()
        return torch.nn.functional.smooth_l1_loss(x * mask, y * mask, reduction="sum") / mask.sum()


class ForwardSumLoss(nn.Module):
    def __init__(self, blank_logprob=-1):
        super().__init__()
        self.log_softmax = torch.nn.LogSoftmax(dim=3)
        self.ctc_loss = torch.nn.CTCLoss(zero_infinity=True)
        self.blank_logprob = blank_logprob

    def forward(self, attn_logprob, in_lens, out_lens):
        key_lens = in_lens
        query_lens = out_lens
        attn_logprob_padded = torch.nn.functional.pad(input=attn_logprob, pad=(1, 0), value=self.blank_logprob)

        total_loss = 0.0
        for bid in range(attn_logprob.shape[0]):
            target_seq = torch.arange(1, key_lens[bid] + 1).unsqueeze(0)
            curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[: query_lens[bid], :, : key_lens[bid] + 1]

            curr_logprob = self.log_softmax(curr_logprob[None])[0]
            loss = self.ctc_loss(
                curr_logprob,
                target_seq,
                input_lengths=query_lens[bid : bid + 1],
                target_lengths=key_lens[bid : bid + 1],
            )
            total_loss = total_loss + loss

        total_loss = total_loss / attn_logprob.shape[0]
        return total_loss


########################
# MODEL LOSS LAYERS
########################


class TacotronLoss(torch.nn.Module):
    """Collection of Tacotron set-up based on provided config."""

    def __init__(self, c, ga_sigma=0.4):
        super().__init__()
        self.stopnet_pos_weight = c.stopnet_pos_weight
        self.use_capacitron_vae = c.use_capacitron_vae
        if self.use_capacitron_vae:
            self.capacitron_capacity = c.capacitron_vae.capacitron_capacity
            self.capacitron_vae_loss_alpha = c.capacitron_vae.capacitron_VAE_loss_alpha
        self.ga_alpha = c.ga_alpha
        self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha
        self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha
        self.decoder_alpha = c.decoder_loss_alpha
        self.postnet_alpha = c.postnet_loss_alpha
        self.decoder_ssim_alpha = c.decoder_ssim_alpha
        self.postnet_ssim_alpha = c.postnet_ssim_alpha
        self.config = c

        # postnet and decoder loss
        if c.loss_masking:
            self.criterion = L1LossMasked(c.seq_len_norm) if c.model in ["Tacotron"] else MSELossMasked(c.seq_len_norm)
        else:
            self.criterion = nn.L1Loss() if c.model in ["Tacotron"] else nn.MSELoss()
        # guided attention loss
        if c.ga_alpha > 0:
            self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma)
        # differential spectral loss
        if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0:
            self.criterion_diff_spec = DifferentialSpectralLoss(loss_func=self.criterion)
        # ssim loss
        if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0:
            self.criterion_ssim = SSIMLoss()
        # stopnet loss
        # pylint: disable=not-callable
        self.criterion_st = BCELossMasked(pos_weight=torch.tensor(self.stopnet_pos_weight)) if c.stopnet else None

        # For dev pruposes only
        self.criterion_capacitron_reconstruction_loss = nn.L1Loss(reduction="sum")

    def forward(
        self,
        postnet_output,
        decoder_output,
        mel_input,
        linear_input,
        stopnet_output,
        stopnet_target,
        stop_target_length,
        capacitron_vae_outputs,
        output_lens,
        decoder_b_output,
        alignments,
        alignment_lens,
        alignments_backwards,
        input_lens,
    ):
        # decoder outputs linear or mel spectrograms for Tacotron and Tacotron2
        # the target should be set acccordingly
        postnet_target = linear_input if self.config.model.lower() in ["tacotron"] else mel_input

        return_dict = {}
        # remove lengths if no masking is applied
        if not self.config.loss_masking:
            output_lens = None
        # decoder and postnet losses
        if self.config.loss_masking:
            if self.decoder_alpha > 0:
                decoder_loss = self.criterion(decoder_output, mel_input, output_lens)
            if self.postnet_alpha > 0:
                postnet_loss = self.criterion(postnet_output, postnet_target, output_lens)
        else:
            if self.decoder_alpha > 0:
                decoder_loss = self.criterion(decoder_output, mel_input)
            if self.postnet_alpha > 0:
                postnet_loss = self.criterion(postnet_output, postnet_target)
        loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss
        return_dict["decoder_loss"] = decoder_loss
        return_dict["postnet_loss"] = postnet_loss

        if self.use_capacitron_vae:
            # extract capacitron vae infos
            posterior_distribution, prior_distribution, beta = capacitron_vae_outputs

            # KL divergence term between the posterior and the prior
            kl_term = torch.mean(torch.distributions.kl_divergence(posterior_distribution, prior_distribution))

            # Limit the mutual information between the data and latent space by the variational capacity limit
            kl_capacity = kl_term - self.capacitron_capacity

            # pass beta through softplus to keep it positive
            beta = torch.nn.functional.softplus(beta)[0]

            # This is the term going to the main ADAM optimiser, we detach beta because
            # beta is optimised by a separate, SGD optimiser below
            capacitron_vae_loss = beta.detach() * kl_capacity

            # normalize the capacitron_vae_loss as in L1Loss or MSELoss.
            # After this, both the standard loss and capacitron_vae_loss will be in the same scale.
            # For this reason we don't need use L1Loss and MSELoss in "sum" reduction mode.
            # Note: the batch is not considered because the L1Loss was calculated in "sum" mode
            # divided by the batch size, So not dividing the capacitron_vae_loss by B is legitimate.

            # get B T D dimension from input
            B, T, D = mel_input.size()
            # normalize
            if self.config.loss_masking:
                # if mask loss get T using the mask
                T = output_lens.sum() / B

            # Only for dev purposes to be able to compare the reconstruction loss with the values in the
            # original Capacitron paper
            return_dict["capaciton_reconstruction_loss"] = (
                self.criterion_capacitron_reconstruction_loss(decoder_output, mel_input) / decoder_output.size(0)
            ) + kl_capacity

            capacitron_vae_loss = capacitron_vae_loss / (T * D)
            capacitron_vae_loss = capacitron_vae_loss * self.capacitron_vae_loss_alpha

            # This is the term to purely optimise beta and to pass into the SGD optimizer
            beta_loss = torch.negative(beta) * kl_capacity.detach()

            loss += capacitron_vae_loss

            return_dict["capacitron_vae_loss"] = capacitron_vae_loss
            return_dict["capacitron_vae_beta_loss"] = beta_loss
            return_dict["capacitron_vae_kl_term"] = kl_term
            return_dict["capacitron_beta"] = beta

        stop_loss = (
            self.criterion_st(stopnet_output, stopnet_target, stop_target_length)
            if self.config.stopnet
            else torch.zeros(1)
        )
        loss += stop_loss
        return_dict["stopnet_loss"] = stop_loss

        # backward decoder loss (if enabled)
        if self.config.bidirectional_decoder:
            if self.config.loss_masking:
                decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input, output_lens)
            else:
                decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input)
            decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1,)), decoder_output)
            loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
            return_dict["decoder_b_loss"] = decoder_b_loss
            return_dict["decoder_c_loss"] = decoder_c_loss

        # double decoder consistency loss (if enabled)
        if self.config.double_decoder_consistency:
            if self.config.loss_masking:
                decoder_b_loss = self.criterion(decoder_b_output, mel_input, output_lens)
            else:
                decoder_b_loss = self.criterion(decoder_b_output, mel_input)
            # decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
            attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
            loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
            return_dict["decoder_coarse_loss"] = decoder_b_loss
            return_dict["decoder_ddc_loss"] = attention_c_loss

        # guided attention loss (if enabled)
        if self.config.ga_alpha > 0:
            ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens)
            loss += ga_loss * self.ga_alpha
            return_dict["ga_loss"] = ga_loss

        # decoder differential spectral loss
        if self.config.decoder_diff_spec_alpha > 0:
            decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens)
            loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha
            return_dict["decoder_diff_spec_loss"] = decoder_diff_spec_loss

        # postnet differential spectral loss
        if self.config.postnet_diff_spec_alpha > 0:
            postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, postnet_target, output_lens)
            loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha
            return_dict["postnet_diff_spec_loss"] = postnet_diff_spec_loss

        # decoder ssim loss
        if self.config.decoder_ssim_alpha > 0:
            decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens)
            loss += decoder_ssim_loss * self.postnet_ssim_alpha
            return_dict["decoder_ssim_loss"] = decoder_ssim_loss

        # postnet ssim loss
        if self.config.postnet_ssim_alpha > 0:
            postnet_ssim_loss = self.criterion_ssim(postnet_output, postnet_target, output_lens)
            loss += postnet_ssim_loss * self.postnet_ssim_alpha
            return_dict["postnet_ssim_loss"] = postnet_ssim_loss

        return_dict["loss"] = loss
        return return_dict


class GlowTTSLoss(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.constant_factor = 0.5 * math.log(2 * math.pi)

    def forward(self, z, means, scales, log_det, y_lengths, o_dur_log, o_attn_dur, x_lengths):
        return_dict = {}
        # flow loss - neg log likelihood
        pz = torch.sum(scales) + 0.5 * torch.sum(torch.exp(-2 * scales) * (z - means) ** 2)
        log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (torch.sum(y_lengths) * z.shape[2])
        # duration loss - MSE
        loss_dur = torch.sum((o_dur_log - o_attn_dur) ** 2) / torch.sum(x_lengths)
        # duration loss - huber loss
        # loss_dur = torch.nn.functional.smooth_l1_loss(o_dur_log, o_attn_dur, reduction="sum") / torch.sum(x_lengths)
        return_dict["loss"] = log_mle + loss_dur
        return_dict["log_mle"] = log_mle
        return_dict["loss_dur"] = loss_dur

        # check if any loss is NaN
        for key, loss in return_dict.items():
            if torch.isnan(loss):
                raise RuntimeError(f" [!] NaN loss with {key}.")
        return return_dict


def mse_loss_custom(x, y):
    """MSE loss using the torch back-end without reduction.
    It uses less VRAM than the raw code"""
    expanded_x, expanded_y = torch.broadcast_tensors(x, y)
    return torch._C._nn.mse_loss(expanded_x, expanded_y, 0)  # pylint: disable=protected-access, c-extension-no-member


class MDNLoss(nn.Module):
    """Mixture of Density Network Loss as described in https://arxiv.org/pdf/2003.01950.pdf."""

    def forward(self, logp, text_lengths, mel_lengths):  # pylint: disable=no-self-use
        """
        Shapes:
            mu: [B, D, T]
            log_sigma: [B, D, T]
            mel_spec: [B, D, T]
        """
        B, T_seq, T_mel = logp.shape
        log_alpha = logp.new_ones(B, T_seq, T_mel) * (-1e4)
        log_alpha[:, 0, 0] = logp[:, 0, 0]
        for t in range(1, T_mel):
            prev_step = torch.cat(
                [log_alpha[:, :, t - 1 : t], functional.pad(log_alpha[:, :, t - 1 : t], (0, 0, 1, -1), value=-1e4)],
                dim=-1,
            )
            log_alpha[:, :, t] = torch.logsumexp(prev_step + 1e-4, dim=-1) + logp[:, :, t]
        alpha_last = log_alpha[torch.arange(B), text_lengths - 1, mel_lengths - 1]
        mdn_loss = -alpha_last.mean() / T_seq
        return mdn_loss  # , log_prob_matrix


class AlignTTSLoss(nn.Module):
    """Modified AlignTTS Loss.
    Computes
        - L1 and SSIM losses from output spectrograms.
        - Huber loss for duration predictor.
        - MDNLoss for Mixture of Density Network.

    All loss values are aggregated by a weighted sum of the alpha values.

    Args:
        c (dict): TTS model configuration.
    """

    def __init__(self, c):
        super().__init__()
        self.mdn_loss = MDNLoss()
        self.spec_loss = MSELossMasked(False)
        self.ssim = SSIMLoss()
        self.dur_loss = MSELossMasked(False)

        self.ssim_alpha = c.ssim_alpha
        self.dur_loss_alpha = c.dur_loss_alpha
        self.spec_loss_alpha = c.spec_loss_alpha
        self.mdn_alpha = c.mdn_alpha

    def forward(
        self, logp, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens, phase
    ):
        # ssim_alpha, dur_loss_alpha, spec_loss_alpha, mdn_alpha = self.set_alphas(step)
        spec_loss, ssim_loss, dur_loss, mdn_loss = 0, 0, 0, 0
        if phase == 0:
            mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
        elif phase == 1:
            spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
            ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
        elif phase == 2:
            mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
            spec_loss = self.spec_lossX(decoder_output, decoder_target, decoder_output_lens)
            ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
        elif phase == 3:
            dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
        else:
            mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
            spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
            ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
            dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
        loss = (
            self.spec_loss_alpha * spec_loss
            + self.ssim_alpha * ssim_loss
            + self.dur_loss_alpha * dur_loss
            + self.mdn_alpha * mdn_loss
        )
        return {"loss": loss, "loss_l1": spec_loss, "loss_ssim": ssim_loss, "loss_dur": dur_loss, "mdn_loss": mdn_loss}


class VitsGeneratorLoss(nn.Module):
    def __init__(self, c: Coqpit):
        super().__init__()
        self.kl_loss_alpha = c.kl_loss_alpha
        self.gen_loss_alpha = c.gen_loss_alpha
        self.feat_loss_alpha = c.feat_loss_alpha
        self.dur_loss_alpha = c.dur_loss_alpha
        self.mel_loss_alpha = c.mel_loss_alpha
        self.spk_encoder_loss_alpha = c.speaker_encoder_loss_alpha
        self.stft = TorchSTFT(
            c.audio.fft_size,
            c.audio.hop_length,
            c.audio.win_length,
            sample_rate=c.audio.sample_rate,
            mel_fmin=c.audio.mel_fmin,
            mel_fmax=c.audio.mel_fmax,
            n_mels=c.audio.num_mels,
            use_mel=True,
            do_amp_to_db=True,
        )

    @staticmethod
    def feature_loss(feats_real, feats_generated):
        loss = 0
        for dr, dg in zip(feats_real, feats_generated):
            for rl, gl in zip(dr, dg):
                rl = rl.float().detach()
                gl = gl.float()
                loss += torch.mean(torch.abs(rl - gl))
        return loss * 2

    @staticmethod
    def generator_loss(scores_fake):
        loss = 0
        gen_losses = []
        for dg in scores_fake:
            dg = dg.float()
            l = torch.mean((1 - dg) ** 2)
            gen_losses.append(l)
            loss += l

        return loss, gen_losses

    @staticmethod
    def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
        """
        z_p, logs_q: [b, h, t_t]
        m_p, logs_p: [b, h, t_t]
        """
        z_p = z_p.float()
        logs_q = logs_q.float()
        m_p = m_p.float()
        logs_p = logs_p.float()
        z_mask = z_mask.float()

        kl = logs_p - logs_q - 0.5
        kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
        kl = torch.sum(kl * z_mask)
        l = kl / torch.sum(z_mask)
        return l

    @staticmethod
    def cosine_similarity_loss(gt_spk_emb, syn_spk_emb):
        return -torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean()

    def forward(
        self,
        mel_slice,
        mel_slice_hat,
        z_p,
        logs_q,
        m_p,
        logs_p,
        z_len,
        scores_disc_fake,
        feats_disc_fake,
        feats_disc_real,
        loss_duration,
        use_speaker_encoder_as_loss=False,
        gt_spk_emb=None,
        syn_spk_emb=None,
    ):
        """
        Shapes:
            - mel_slice : :math:`[B, 1, T]`
            - mel_slice_hat: :math:`[B, 1, T]`
            - z_p: :math:`[B, C, T]`
            - logs_q: :math:`[B, C, T]`
            - m_p: :math:`[B, C, T]`
            - logs_p: :math:`[B, C, T]`
            - z_len: :math:`[B]`
            - scores_disc_fake[i]: :math:`[B, C]`
            - feats_disc_fake[i][j]: :math:`[B, C, T', P]`
            - feats_disc_real[i][j]: :math:`[B, C, T', P]`
        """
        loss = 0.0
        return_dict = {}
        z_mask = sequence_mask(z_len).float()
        # compute losses
        loss_kl = (
            self.kl_loss(z_p=z_p, logs_q=logs_q, m_p=m_p, logs_p=logs_p, z_mask=z_mask.unsqueeze(1))
            * self.kl_loss_alpha
        )
        loss_feat = (
            self.feature_loss(feats_real=feats_disc_real, feats_generated=feats_disc_fake) * self.feat_loss_alpha
        )
        loss_gen = self.generator_loss(scores_fake=scores_disc_fake)[0] * self.gen_loss_alpha
        loss_mel = torch.nn.functional.l1_loss(mel_slice, mel_slice_hat) * self.mel_loss_alpha
        loss_duration = torch.sum(loss_duration.float()) * self.dur_loss_alpha
        loss = loss_kl + loss_feat + loss_mel + loss_gen + loss_duration

        if use_speaker_encoder_as_loss:
            loss_se = self.cosine_similarity_loss(gt_spk_emb, syn_spk_emb) * self.spk_encoder_loss_alpha
            loss = loss + loss_se
            return_dict["loss_spk_encoder"] = loss_se
        # pass losses to the dict
        return_dict["loss_gen"] = loss_gen
        return_dict["loss_kl"] = loss_kl
        return_dict["loss_feat"] = loss_feat
        return_dict["loss_mel"] = loss_mel
        return_dict["loss_duration"] = loss_duration
        return_dict["loss"] = loss
        return return_dict


class VitsDiscriminatorLoss(nn.Module):
    def __init__(self, c: Coqpit):
        super().__init__()
        self.disc_loss_alpha = c.disc_loss_alpha

    @staticmethod
    def discriminator_loss(scores_real, scores_fake):
        loss = 0
        real_losses = []
        fake_losses = []
        for dr, dg in zip(scores_real, scores_fake):
            dr = dr.float()
            dg = dg.float()
            real_loss = torch.mean((1 - dr) ** 2)
            fake_loss = torch.mean(dg**2)
            loss += real_loss + fake_loss
            real_losses.append(real_loss.item())
            fake_losses.append(fake_loss.item())
        return loss, real_losses, fake_losses

    def forward(self, scores_disc_real, scores_disc_fake):
        loss = 0.0
        return_dict = {}
        loss_disc, loss_disc_real, _ = self.discriminator_loss(
            scores_real=scores_disc_real, scores_fake=scores_disc_fake
        )
        return_dict["loss_disc"] = loss_disc * self.disc_loss_alpha
        loss = loss + return_dict["loss_disc"]
        return_dict["loss"] = loss

        for i, ldr in enumerate(loss_disc_real):
            return_dict[f"loss_disc_real_{i}"] = ldr
        return return_dict


class ForwardTTSLoss(nn.Module):
    """Generic configurable ForwardTTS loss."""

    def __init__(self, c):
        super().__init__()
        if c.spec_loss_type == "mse":
            self.spec_loss = MSELossMasked(False)
        elif c.spec_loss_type == "l1":
            self.spec_loss = L1LossMasked(False)
        else:
            raise ValueError(" [!] Unknown spec_loss_type {}".format(c.spec_loss_type))

        if c.duration_loss_type == "mse":
            self.dur_loss = MSELossMasked(False)
        elif c.duration_loss_type == "l1":
            self.dur_loss = L1LossMasked(False)
        elif c.duration_loss_type == "huber":
            self.dur_loss = Huber()
        else:
            raise ValueError(" [!] Unknown duration_loss_type {}".format(c.duration_loss_type))

        if c.model_args.use_aligner:
            self.aligner_loss = ForwardSumLoss()
            self.aligner_loss_alpha = c.aligner_loss_alpha

        if c.model_args.use_pitch:
            self.pitch_loss = MSELossMasked(False)
            self.pitch_loss_alpha = c.pitch_loss_alpha

        if c.model_args.use_energy:
            self.energy_loss = MSELossMasked(False)
            self.energy_loss_alpha = c.energy_loss_alpha

        if c.use_ssim_loss:
            self.ssim = SSIMLoss() if c.use_ssim_loss else None
            self.ssim_loss_alpha = c.ssim_loss_alpha

        self.spec_loss_alpha = c.spec_loss_alpha
        self.dur_loss_alpha = c.dur_loss_alpha
        self.binary_alignment_loss_alpha = c.binary_align_loss_alpha

    @staticmethod
    def _binary_alignment_loss(alignment_hard, alignment_soft):
        """Binary loss that forces soft alignments to match the hard alignments as
        explained in `https://arxiv.org/pdf/2108.10447.pdf`.
        """
        log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum()
        return -log_sum / alignment_hard.sum()

    def forward(
        self,
        decoder_output,
        decoder_target,
        decoder_output_lens,
        dur_output,
        dur_target,
        pitch_output,
        pitch_target,
        energy_output,
        energy_target,
        input_lens,
        alignment_logprob=None,
        alignment_hard=None,
        alignment_soft=None,
        binary_loss_weight=None,
    ):
        loss = 0
        return_dict = {}
        if hasattr(self, "ssim_loss") and self.ssim_loss_alpha > 0:
            ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
            loss = loss + self.ssim_loss_alpha * ssim_loss
            return_dict["loss_ssim"] = self.ssim_loss_alpha * ssim_loss

        if self.spec_loss_alpha > 0:
            spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
            loss = loss + self.spec_loss_alpha * spec_loss
            return_dict["loss_spec"] = self.spec_loss_alpha * spec_loss

        if self.dur_loss_alpha > 0:
            log_dur_tgt = torch.log(dur_target.float() + 1)
            dur_loss = self.dur_loss(dur_output[:, :, None], log_dur_tgt[:, :, None], input_lens)
            loss = loss + self.dur_loss_alpha * dur_loss
            return_dict["loss_dur"] = self.dur_loss_alpha * dur_loss

        if hasattr(self, "pitch_loss") and self.pitch_loss_alpha > 0:
            pitch_loss = self.pitch_loss(pitch_output.transpose(1, 2), pitch_target.transpose(1, 2), input_lens)
            loss = loss + self.pitch_loss_alpha * pitch_loss
            return_dict["loss_pitch"] = self.pitch_loss_alpha * pitch_loss

        if hasattr(self, "energy_loss") and self.energy_loss_alpha > 0:
            energy_loss = self.energy_loss(energy_output.transpose(1, 2), energy_target.transpose(1, 2), input_lens)
            loss = loss + self.energy_loss_alpha * energy_loss
            return_dict["loss_energy"] = self.energy_loss_alpha * energy_loss

        if hasattr(self, "aligner_loss") and self.aligner_loss_alpha > 0:
            aligner_loss = self.aligner_loss(alignment_logprob, input_lens, decoder_output_lens)
            loss = loss + self.aligner_loss_alpha * aligner_loss
            return_dict["loss_aligner"] = self.aligner_loss_alpha * aligner_loss

        if self.binary_alignment_loss_alpha > 0 and alignment_hard is not None:
            binary_alignment_loss = self._binary_alignment_loss(alignment_hard, alignment_soft)
            loss = loss + self.binary_alignment_loss_alpha * binary_alignment_loss
            if binary_loss_weight:
                return_dict["loss_binary_alignment"] = (
                    self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight
                )
            else:
                return_dict["loss_binary_alignment"] = self.binary_alignment_loss_alpha * binary_alignment_loss

        return_dict["loss"] = loss
        return return_dict