File size: 11,736 Bytes
78d1101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from typing import List, Tuple

import torch
import torch.nn.functional as F
from torch import nn
from tqdm.auto import tqdm

from TTS.tts.layers.tacotron.common_layers import Linear
from TTS.tts.layers.tacotron.tacotron2 import ConvBNBlock


class Encoder(nn.Module):
    r"""Neural HMM Encoder

    Same as Tacotron 2 encoder but increases the input length by states per phone

    Args:
        num_chars (int): Number of characters in the input.
        state_per_phone (int): Number of states per phone.
        in_out_channels (int): number of input and output channels.
        n_convolutions (int): number of convolutional layers.
    """

    def __init__(self, num_chars, state_per_phone, in_out_channels=512, n_convolutions=3):
        super().__init__()

        self.state_per_phone = state_per_phone
        self.in_out_channels = in_out_channels

        self.emb = nn.Embedding(num_chars, in_out_channels)
        self.convolutions = nn.ModuleList()
        for _ in range(n_convolutions):
            self.convolutions.append(ConvBNBlock(in_out_channels, in_out_channels, 5, "relu"))
        self.lstm = nn.LSTM(
            in_out_channels,
            int(in_out_channels / 2) * state_per_phone,
            num_layers=1,
            batch_first=True,
            bias=True,
            bidirectional=True,
        )
        self.rnn_state = None

    def forward(self, x: torch.FloatTensor, x_len: torch.LongTensor) -> Tuple[torch.FloatTensor, torch.LongTensor]:
        """Forward pass to the encoder.

        Args:
            x (torch.FloatTensor): input text indices.
                - shape: :math:`(b, T_{in})`
            x_len (torch.LongTensor): input text lengths.
                - shape: :math:`(b,)`

        Returns:
            Tuple[torch.FloatTensor, torch.LongTensor]: encoder outputs and output lengths.
                -shape: :math:`((b, T_{in} * states_per_phone, in_out_channels), (b,))`
        """
        b, T = x.shape
        o = self.emb(x).transpose(1, 2)
        for layer in self.convolutions:
            o = layer(o)
        o = o.transpose(1, 2)
        o = nn.utils.rnn.pack_padded_sequence(o, x_len.cpu(), batch_first=True)
        self.lstm.flatten_parameters()
        o, _ = self.lstm(o)
        o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True)
        o = o.reshape(b, T * self.state_per_phone, self.in_out_channels)
        x_len = x_len * self.state_per_phone
        return o, x_len

    def inference(self, x, x_len):
        """Inference to the encoder.

        Args:
            x (torch.FloatTensor): input text indices.
                - shape: :math:`(b, T_{in})`
            x_len (torch.LongTensor): input text lengths.
                - shape: :math:`(b,)`

        Returns:
            Tuple[torch.FloatTensor, torch.LongTensor]: encoder outputs and output lengths.
                -shape: :math:`((b, T_{in} * states_per_phone, in_out_channels), (b,))`
        """
        b, T = x.shape
        o = self.emb(x).transpose(1, 2)
        for layer in self.convolutions:
            o = layer(o)
        o = o.transpose(1, 2)
        # self.lstm.flatten_parameters()
        o, _ = self.lstm(o)
        o = o.reshape(b, T * self.state_per_phone, self.in_out_channels)
        x_len = x_len * self.state_per_phone
        return o, x_len


class ParameterModel(nn.Module):
    r"""Main neural network of the outputnet

    Note: Do not put dropout layers here, the model will not converge.

    Args:
            outputnet_size (List[int]): the architecture of the parameter model
            input_size (int): size of input for the first layer
            output_size (int): size of output i.e size of the feature dim
            frame_channels (int): feature dim to set the flat start bias
            flat_start_params (dict): flat start parameters to set the bias
    """

    def __init__(
        self,
        outputnet_size: List[int],
        input_size: int,
        output_size: int,
        frame_channels: int,
        flat_start_params: dict,
    ):
        super().__init__()
        self.frame_channels = frame_channels

        self.layers = nn.ModuleList(
            [Linear(inp, out) for inp, out in zip([input_size] + outputnet_size[:-1], outputnet_size)]
        )
        self.last_layer = nn.Linear(outputnet_size[-1], output_size)
        self.flat_start_output_layer(
            flat_start_params["mean"], flat_start_params["std"], flat_start_params["transition_p"]
        )

    def flat_start_output_layer(self, mean, std, transition_p):
        self.last_layer.weight.data.zero_()
        self.last_layer.bias.data[0 : self.frame_channels] = mean
        self.last_layer.bias.data[self.frame_channels : 2 * self.frame_channels] = OverflowUtils.inverse_softplus(std)
        self.last_layer.bias.data[2 * self.frame_channels :] = OverflowUtils.inverse_sigmod(transition_p)

    def forward(self, x):
        for layer in self.layers:
            x = F.relu(layer(x))
        x = self.last_layer(x)
        return x


class Outputnet(nn.Module):
    r"""
    This network takes current state and previous observed values as input
    and returns its parameters, mean, standard deviation and probability
    of transition to the next state
    """

    def __init__(
        self,
        encoder_dim: int,
        memory_rnn_dim: int,
        frame_channels: int,
        outputnet_size: List[int],
        flat_start_params: dict,
        std_floor: float = 1e-2,
    ):
        super().__init__()

        self.frame_channels = frame_channels
        self.flat_start_params = flat_start_params
        self.std_floor = std_floor

        input_size = memory_rnn_dim + encoder_dim
        output_size = 2 * frame_channels + 1

        self.parametermodel = ParameterModel(
            outputnet_size=outputnet_size,
            input_size=input_size,
            output_size=output_size,
            flat_start_params=flat_start_params,
            frame_channels=frame_channels,
        )

    def forward(self, ar_mels, inputs):
        r"""Inputs observation and returns the means, stds and transition probability for the current state

        Args:
            ar_mel_inputs (torch.FloatTensor): shape (batch, prenet_dim)
            states (torch.FloatTensor):  (batch, hidden_states, hidden_state_dim)

        Returns:
            means: means for the emission observation for each feature
                - shape: (B, hidden_states, feature_size)
            stds: standard deviations for the emission observation for each feature
                - shape: (batch, hidden_states, feature_size)
            transition_vectors: transition vector for the current hidden state
                - shape: (batch, hidden_states)
        """
        batch_size, prenet_dim = ar_mels.shape[0], ar_mels.shape[1]
        N = inputs.shape[1]

        ar_mels = ar_mels.unsqueeze(1).expand(batch_size, N, prenet_dim)
        ar_mels = torch.cat((ar_mels, inputs), dim=2)
        ar_mels = self.parametermodel(ar_mels)

        mean, std, transition_vector = (
            ar_mels[:, :, 0 : self.frame_channels],
            ar_mels[:, :, self.frame_channels : 2 * self.frame_channels],
            ar_mels[:, :, 2 * self.frame_channels :].squeeze(2),
        )
        std = F.softplus(std)
        std = self._floor_std(std)
        return mean, std, transition_vector

    def _floor_std(self, std):
        r"""
        It clamps the standard deviation to not to go below some level
        This removes the problem when the model tries to cheat for higher likelihoods by converting
        one of the gaussians to a point mass.

        Args:
            std (float Tensor): tensor containing the standard deviation to be
        """
        original_tensor = std.clone().detach()
        std = torch.clamp(std, min=self.std_floor)
        if torch.any(original_tensor != std):
            print(
                "[*] Standard deviation was floored! The model is preventing overfitting, nothing serious to worry about"
            )
        return std


class OverflowUtils:
    @staticmethod
    def get_data_parameters_for_flat_start(
        data_loader: torch.utils.data.DataLoader, out_channels: int, states_per_phone: int
    ):
        """Generates data parameters for flat starting the HMM.

        Args:
            data_loader (torch.utils.data.Dataloader): _description_
            out_channels (int): mel spectrogram channels
            states_per_phone (_type_): HMM states per phone
        """

        # State related information for transition_p
        total_state_len = 0
        total_mel_len = 0

        # Useful for data mean an std
        total_mel_sum = 0
        total_mel_sq_sum = 0

        for batch in tqdm(data_loader, leave=False):
            text_lengths = batch["token_id_lengths"]
            mels = batch["mel"]
            mel_lengths = batch["mel_lengths"]

            total_state_len += torch.sum(text_lengths)
            total_mel_len += torch.sum(mel_lengths)
            total_mel_sum += torch.sum(mels)
            total_mel_sq_sum += torch.sum(torch.pow(mels, 2))

        data_mean = total_mel_sum / (total_mel_len * out_channels)
        data_std = torch.sqrt((total_mel_sq_sum / (total_mel_len * out_channels)) - torch.pow(data_mean, 2))
        average_num_states = total_state_len / len(data_loader.dataset)
        average_mel_len = total_mel_len / len(data_loader.dataset)
        average_duration_each_state = average_mel_len / average_num_states
        init_transition_prob = 1 / average_duration_each_state

        return data_mean, data_std, (init_transition_prob * states_per_phone)

    @staticmethod
    @torch.no_grad()
    def update_flat_start_transition(model, transition_p):
        model.neural_hmm.output_net.parametermodel.flat_start_output_layer(0.0, 1.0, transition_p)

    @staticmethod
    def log_clamped(x, eps=1e-04):
        """
        Avoids the log(0) problem

        Args:
            x (torch.tensor): input tensor
            eps (float, optional): lower bound. Defaults to 1e-04.

        Returns:
            torch.tensor: :math:`log(x)`
        """
        clamped_x = torch.clamp(x, min=eps)
        return torch.log(clamped_x)

    @staticmethod
    def inverse_sigmod(x):
        r"""
        Inverse of the sigmoid function
        """
        if not torch.is_tensor(x):
            x = torch.tensor(x)
        return OverflowUtils.log_clamped(x / (1.0 - x))

    @staticmethod
    def inverse_softplus(x):
        r"""
        Inverse of the softplus function
        """
        if not torch.is_tensor(x):
            x = torch.tensor(x)
        return OverflowUtils.log_clamped(torch.exp(x) - 1.0)

    @staticmethod
    def logsumexp(x, dim):
        r"""
        Differentiable LogSumExp: Does not creates nan gradients
            when all the inputs are -inf yeilds 0 gradients.
        Args:
            x : torch.Tensor -  The input tensor
            dim: int - The dimension on which the log sum exp has to be applied
        """

        m, _ = x.max(dim=dim)
        mask = m == -float("inf")
        s = (x - m.masked_fill_(mask, 0).unsqueeze(dim=dim)).exp().sum(dim=dim)
        return s.masked_fill_(mask, 1).log() + m.masked_fill_(mask, -float("inf"))

    @staticmethod
    def double_pad(list_of_different_shape_tensors):
        r"""
        Pads the list of tensors in 2 dimensions
        """
        second_dim_lens = [len(a) for a in [i[0] for i in list_of_different_shape_tensors]]
        second_dim_max = max(second_dim_lens)
        padded_x = [F.pad(x, (0, second_dim_max - len(x[0]))) for x in list_of_different_shape_tensors]
        return nn.utils.rnn.pad_sequence(padded_x, batch_first=True)