Spaces:
Runtime error
Runtime error
File size: 10,913 Bytes
78d1101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import math
import torch
from torch import nn
from torch.nn import functional as F
from TTS.tts.layers.generic.normalization import LayerNorm2
from TTS.tts.layers.vits.transforms import piecewise_rational_quadratic_transform
class DilatedDepthSeparableConv(nn.Module):
def __init__(self, channels, kernel_size, num_layers, dropout_p=0.0) -> torch.tensor:
"""Dilated Depth-wise Separable Convolution module.
::
x |-> DDSConv(x) -> LayerNorm(x) -> GeLU(x) -> Conv1x1(x) -> LayerNorm(x) -> GeLU(x) -> + -> o
|-------------------------------------------------------------------------------------^
Args:
channels ([type]): [description]
kernel_size ([type]): [description]
num_layers ([type]): [description]
dropout_p (float, optional): [description]. Defaults to 0.0.
Returns:
torch.tensor: Network output masked by the input sequence mask.
"""
super().__init__()
self.num_layers = num_layers
self.convs_sep = nn.ModuleList()
self.convs_1x1 = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(num_layers):
dilation = kernel_size**i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(
nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding)
)
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm2(channels))
self.norms_2.append(LayerNorm2(channels))
self.dropout = nn.Dropout(dropout_p)
def forward(self, x, x_mask, g=None):
"""
Shapes:
- x: :math:`[B, C, T]`
- x_mask: :math:`[B, 1, T]`
"""
if g is not None:
x = x + g
for i in range(self.num_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i](y)
y = F.gelu(y)
y = self.convs_1x1[i](y)
y = self.norms_2[i](y)
y = F.gelu(y)
y = self.dropout(y)
x = x + y
return x * x_mask
class ElementwiseAffine(nn.Module):
"""Element-wise affine transform like no-population stats BatchNorm alternative.
Args:
channels (int): Number of input tensor channels.
"""
def __init__(self, channels):
super().__init__()
self.translation = nn.Parameter(torch.zeros(channels, 1))
self.log_scale = nn.Parameter(torch.zeros(channels, 1))
def forward(self, x, x_mask, reverse=False, **kwargs): # pylint: disable=unused-argument
if not reverse:
y = (x * torch.exp(self.log_scale) + self.translation) * x_mask
logdet = torch.sum(self.log_scale * x_mask, [1, 2])
return y, logdet
x = (x - self.translation) * torch.exp(-self.log_scale) * x_mask
return x
class ConvFlow(nn.Module):
"""Dilated depth separable convolutional based spline flow.
Args:
in_channels (int): Number of input tensor channels.
hidden_channels (int): Number of in network channels.
kernel_size (int): Convolutional kernel size.
num_layers (int): Number of convolutional layers.
num_bins (int, optional): Number of spline bins. Defaults to 10.
tail_bound (float, optional): Tail bound for PRQT. Defaults to 5.0.
"""
def __init__(
self,
in_channels: int,
hidden_channels: int,
kernel_size: int,
num_layers: int,
num_bins=10,
tail_bound=5.0,
):
super().__init__()
self.num_bins = num_bins
self.tail_bound = tail_bound
self.hidden_channels = hidden_channels
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers, dropout_p=0.0)
self.proj = nn.Conv1d(hidden_channels, self.half_channels * (num_bins * 3 - 1), 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0)
h = self.convs(h, x_mask, g=g)
h = self.proj(h) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.hidden_channels)
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.hidden_channels)
unnormalized_derivatives = h[..., 2 * self.num_bins :]
x1, logabsdet = piecewise_rational_quadratic_transform(
x1,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=reverse,
tails="linear",
tail_bound=self.tail_bound,
)
x = torch.cat([x0, x1], 1) * x_mask
logdet = torch.sum(logabsdet * x_mask, [1, 2])
if not reverse:
return x, logdet
return x
class StochasticDurationPredictor(nn.Module):
"""Stochastic duration predictor with Spline Flows.
It applies Variational Dequantization and Variational Data Augmentation.
Paper:
SDP: https://arxiv.org/pdf/2106.06103.pdf
Spline Flow: https://arxiv.org/abs/1906.04032
::
## Inference
x -> TextCondEncoder() -> Flow() -> dr_hat
noise ----------------------^
## Training
|---------------------|
x -> TextCondEncoder() -> + -> PosteriorEncoder() -> split() -> z_u, z_v -> (d - z_u) -> concat() -> Flow() -> noise
d -> DurCondEncoder() -> ^ |
|------------------------------------------------------------------------------|
Args:
in_channels (int): Number of input tensor channels.
hidden_channels (int): Number of hidden channels.
kernel_size (int): Kernel size of convolutional layers.
dropout_p (float): Dropout rate.
num_flows (int, optional): Number of flow blocks. Defaults to 4.
cond_channels (int, optional): Number of channels of conditioning tensor. Defaults to 0.
"""
def __init__(
self,
in_channels: int,
hidden_channels: int,
kernel_size: int,
dropout_p: float,
num_flows=4,
cond_channels=0,
language_emb_dim=0,
):
super().__init__()
# add language embedding dim in the input
if language_emb_dim:
in_channels += language_emb_dim
# condition encoder text
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p)
self.proj = nn.Conv1d(hidden_channels, hidden_channels, 1)
# posterior encoder
self.flows = nn.ModuleList()
self.flows.append(ElementwiseAffine(2))
self.flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)]
# condition encoder duration
self.post_pre = nn.Conv1d(1, hidden_channels, 1)
self.post_convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p)
self.post_proj = nn.Conv1d(hidden_channels, hidden_channels, 1)
# flow layers
self.post_flows = nn.ModuleList()
self.post_flows.append(ElementwiseAffine(2))
self.post_flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)]
if cond_channels != 0 and cond_channels is not None:
self.cond = nn.Conv1d(cond_channels, hidden_channels, 1)
if language_emb_dim != 0 and language_emb_dim is not None:
self.cond_lang = nn.Conv1d(language_emb_dim, hidden_channels, 1)
def forward(self, x, x_mask, dr=None, g=None, lang_emb=None, reverse=False, noise_scale=1.0):
"""
Shapes:
- x: :math:`[B, C, T]`
- x_mask: :math:`[B, 1, T]`
- dr: :math:`[B, 1, T]`
- g: :math:`[B, C]`
"""
# condition encoder text
x = self.pre(x)
if g is not None:
x = x + self.cond(g)
if lang_emb is not None:
x = x + self.cond_lang(lang_emb)
x = self.convs(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert dr is not None
# condition encoder duration
h = self.post_pre(dr)
h = self.post_convs(h, x_mask)
h = self.post_proj(h) * x_mask
noise = torch.randn(dr.size(0), 2, dr.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
z_q = noise
# posterior encoder
logdet_tot_q = 0.0
for idx, flow in enumerate(self.post_flows):
z_q, logdet_q = flow(z_q, x_mask, g=(x + h))
logdet_tot_q = logdet_tot_q + logdet_q
if idx > 0:
z_q = torch.flip(z_q, [1])
z_u, z_v = torch.split(z_q, [1, 1], 1)
u = torch.sigmoid(z_u) * x_mask
z0 = (dr - u) * x_mask
# posterior encoder - neg log likelihood
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
nll_posterior_encoder = (
torch.sum(-0.5 * (math.log(2 * math.pi) + (noise**2)) * x_mask, [1, 2]) - logdet_tot_q
)
z0 = torch.log(torch.clamp_min(z0, 1e-5)) * x_mask
logdet_tot = torch.sum(-z0, [1, 2])
z = torch.cat([z0, z_v], 1)
# flow layers
for idx, flow in enumerate(flows):
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
logdet_tot = logdet_tot + logdet
if idx > 0:
z = torch.flip(z, [1])
# flow layers - neg log likelihood
nll_flow_layers = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot
return nll_flow_layers + nll_posterior_encoder
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
for flow in flows:
z = torch.flip(z, [1])
z = flow(z, x_mask, g=x, reverse=reverse)
z0, _ = torch.split(z, [1, 1], 1)
logw = z0
return logw
|