Spaces:
Runtime error
Runtime error
import math | |
from collections import namedtuple | |
from functools import partial | |
from inspect import isfunction | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from torch import einsum, nn | |
DEFAULT_DIM_HEAD = 64 | |
Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"]) | |
LayerIntermediates = namedtuple( | |
"Intermediates", | |
[ | |
"hiddens", | |
"attn_intermediates", | |
"past_key_values", | |
], | |
) | |
# helpers | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def cast_tuple(val, depth): | |
return val if isinstance(val, tuple) else (val,) * depth | |
class always: | |
def __init__(self, val): | |
self.val = val | |
def __call__(self, *args, **kwargs): | |
return self.val | |
class not_equals: | |
def __init__(self, val): | |
self.val = val | |
def __call__(self, x, *args, **kwargs): | |
return x != self.val | |
class equals: | |
def __init__(self, val): | |
self.val = val | |
def __call__(self, x, *args, **kwargs): | |
return x == self.val | |
def max_neg_value(tensor): | |
return -torch.finfo(tensor.dtype).max | |
def l2norm(t): | |
return F.normalize(t, p=2, dim=-1) | |
# init helpers | |
def init_zero_(layer): | |
nn.init.constant_(layer.weight, 0.0) | |
if exists(layer.bias): | |
nn.init.constant_(layer.bias, 0.0) | |
# keyword argument helpers | |
def pick_and_pop(keys, d): | |
values = list(map(lambda key: d.pop(key), keys)) | |
return dict(zip(keys, values)) | |
def group_dict_by_key(cond, d): | |
return_val = [dict(), dict()] | |
for key in d.keys(): | |
match = bool(cond(key)) | |
ind = int(not match) | |
return_val[ind][key] = d[key] | |
return (*return_val,) | |
def string_begins_with(prefix, str): | |
return str.startswith(prefix) | |
def group_by_key_prefix(prefix, d): | |
return group_dict_by_key(partial(string_begins_with, prefix), d) | |
def groupby_prefix_and_trim(prefix, d): | |
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) | |
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items()))) | |
return kwargs_without_prefix, kwargs | |
# activations | |
class ReluSquared(nn.Module): | |
def forward(self, x): | |
return F.relu(x) ** 2 | |
# positional embeddings | |
class AbsolutePositionalEmbedding(nn.Module): | |
def __init__(self, dim, max_seq_len): | |
super().__init__() | |
self.scale = dim**-0.5 | |
self.emb = nn.Embedding(max_seq_len, dim) | |
def forward(self, x): | |
n = torch.arange(x.shape[1], device=x.device) | |
pos_emb = self.emb(n) | |
pos_emb = rearrange(pos_emb, "n d -> () n d") | |
return pos_emb * self.scale | |
class FixedPositionalEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
def forward(self, x, seq_dim=1, offset=0): | |
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset | |
sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq) | |
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) | |
return rearrange(emb, "n d -> () n d") | |
class RelativePositionBias(nn.Module): | |
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8): | |
super().__init__() | |
self.scale = scale | |
self.causal = causal | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128): | |
ret = 0 | |
n = -relative_position | |
if not causal: | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
else: | |
n = torch.max(n, torch.zeros_like(n)) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = ( | |
max_exact | |
+ (torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)).long() | |
) | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, qk_dots): | |
i, j, device = *qk_dots.shape[-2:], qk_dots.device | |
q_pos = torch.arange(i, dtype=torch.long, device=device) | |
k_pos = torch.arange(j, dtype=torch.long, device=device) | |
rel_pos = k_pos[None, :] - q_pos[:, None] | |
rp_bucket = self._relative_position_bucket( | |
rel_pos, causal=self.causal, num_buckets=self.num_buckets, max_distance=self.max_distance | |
) | |
values = self.relative_attention_bias(rp_bucket) | |
bias = rearrange(values, "i j h -> () h i j") | |
return qk_dots + (bias * self.scale) | |
class AlibiPositionalBias(nn.Module): | |
def __init__(self, heads, **kwargs): | |
super().__init__() | |
self.heads = heads | |
slopes = torch.Tensor(self._get_slopes(heads)) | |
slopes = rearrange(slopes, "h -> () h () ()") | |
self.register_buffer("slopes", slopes, persistent=False) | |
self.register_buffer("bias", None, persistent=False) | |
def _get_slopes(heads): | |
def get_slopes_power_of_2(n): | |
start = 2 ** (-(2 ** -(math.log2(n) - 3))) | |
ratio = start | |
return [start * ratio**i for i in range(n)] | |
if math.log2(heads).is_integer(): | |
return get_slopes_power_of_2(heads) | |
closest_power_of_2 = 2 ** math.floor(math.log2(heads)) | |
return ( | |
get_slopes_power_of_2(closest_power_of_2) | |
+ get_slopes_power_of_2(2 * closest_power_of_2)[0::2][: heads - closest_power_of_2] | |
) | |
def forward(self, qk_dots): | |
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device | |
if exists(self.bias) and self.bias.shape[-1] >= j: | |
return qk_dots + self.bias[..., :j] | |
bias = torch.arange(j, device=device) | |
bias = rearrange(bias, "j -> () () () j") | |
bias = bias * self.slopes | |
num_heads_unalibied = h - bias.shape[1] | |
bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) | |
self.register_buffer("bias", bias, persistent=False) | |
return qk_dots + self.bias | |
class LearnedAlibiPositionalBias(AlibiPositionalBias): | |
def __init__(self, heads, bidirectional=False): | |
super().__init__(heads) | |
los_slopes = torch.log(self.slopes) | |
self.learned_logslopes = nn.Parameter(los_slopes) | |
self.bidirectional = bidirectional | |
if self.bidirectional: | |
self.learned_logslopes_future = nn.Parameter(los_slopes) | |
def forward(self, qk_dots): | |
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device | |
def get_slopes(param): | |
return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1])) | |
if exists(self.bias) and self.bias.shape[-1] >= j: | |
bias = self.bias[..., :i, :j] | |
else: | |
i_arange = torch.arange(i, device=device) | |
j_arange = torch.arange(j, device=device) | |
bias = rearrange(j_arange, "j -> 1 1 1 j") - rearrange(i_arange, "i -> 1 1 i 1") | |
self.register_buffer("bias", bias, persistent=False) | |
if self.bidirectional: | |
past_slopes = get_slopes(self.learned_logslopes) | |
future_slopes = get_slopes(self.learned_logslopes_future) | |
bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes) | |
else: | |
slopes = get_slopes(self.learned_logslopes) | |
bias = bias * slopes | |
return qk_dots + bias | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
def forward(self, max_seq_len, device): | |
t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq) | |
freqs = torch.einsum("i , j -> i j", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
return rearrange(emb, "n d -> () () n d") | |
def rotate_half(x): | |
x = rearrange(x, "... (j d) -> ... j d", j=2) | |
x1, x2 = x.unbind(dim=-2) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(t, freqs): | |
seq_len = t.shape[-2] | |
freqs = freqs[:, :, -seq_len:] | |
return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) | |
# norms | |
class Scale(nn.Module): | |
def __init__(self, value, fn): | |
super().__init__() | |
self.value = value | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
out = self.fn(x, **kwargs) | |
scale_fn = lambda t: t * self.value | |
if not isinstance(out, tuple): | |
return scale_fn(out) | |
return (scale_fn(out[0]), *out[1:]) | |
class Rezero(nn.Module): | |
def __init__(self, fn): | |
super().__init__() | |
self.fn = fn | |
self.g = nn.Parameter(torch.zeros(1)) | |
def forward(self, x, **kwargs): | |
out = self.fn(x, **kwargs) | |
rezero_fn = lambda t: t * self.g | |
if not isinstance(out, tuple): | |
return rezero_fn(out) | |
return (rezero_fn(out[0]), *out[1:]) | |
class ScaleNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.scale = dim**-0.5 | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(1)) | |
def forward(self, x): | |
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
return x / norm.clamp(min=self.eps) * self.g | |
class RMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-8): | |
super().__init__() | |
self.scale = dim**-0.5 | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
return x / norm.clamp(min=self.eps) * self.g | |
class RMSScaleShiftNorm(nn.Module): | |
def __init__(self, dim, eps=1e-8): | |
super().__init__() | |
self.scale = dim**-0.5 | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(dim)) | |
self.scale_shift_process = nn.Linear(dim * 2, dim * 2) | |
def forward(self, x, norm_scale_shift_inp): | |
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
norm = x / norm.clamp(min=self.eps) * self.g | |
ss_emb = self.scale_shift_process(norm_scale_shift_inp) | |
scale, shift = torch.chunk(ss_emb, 2, dim=1) | |
h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
return h | |
# residual and residual gates | |
class Residual(nn.Module): | |
def __init__(self, dim, scale_residual=False): | |
super().__init__() | |
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None | |
def forward(self, x, residual): | |
if exists(self.residual_scale): | |
residual = residual * self.residual_scale | |
return x + residual | |
class GRUGating(nn.Module): | |
def __init__(self, dim, scale_residual=False): | |
super().__init__() | |
self.gru = nn.GRUCell(dim, dim) | |
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None | |
def forward(self, x, residual): | |
if exists(self.residual_scale): | |
residual = residual * self.residual_scale | |
gated_output = self.gru(rearrange(x, "b n d -> (b n) d"), rearrange(residual, "b n d -> (b n) d")) | |
return gated_output.reshape_as(x) | |
# token shifting | |
def shift(t, amount, mask=None): | |
if amount == 0: | |
return t | |
if exists(mask): | |
t = t.masked_fill(~mask[..., None], 0.0) | |
return F.pad(t, (0, 0, amount, -amount), value=0.0) | |
class ShiftTokens(nn.Module): | |
def __init__(self, shifts, fn): | |
super().__init__() | |
self.fn = fn | |
self.shifts = tuple(shifts) | |
def forward(self, x, **kwargs): | |
mask = kwargs.get("mask", None) | |
shifts = self.shifts | |
segments = len(shifts) | |
feats_per_shift = x.shape[-1] // segments | |
splitted = x.split(feats_per_shift, dim=-1) | |
segments_to_shift, rest = splitted[:segments], splitted[segments:] | |
segments_to_shift = list(map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts))) | |
x = torch.cat((*segments_to_shift, *rest), dim=-1) | |
return self.fn(x, **kwargs) | |
# feedforward | |
class GLU(nn.Module): | |
def __init__(self, dim_in, dim_out, activation): | |
super().__init__() | |
self.act = activation | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * self.act(gate) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_out=None, | |
mult=4, | |
glu=False, | |
relu_squared=False, | |
post_act_ln=False, | |
dropout=0.0, | |
zero_init_output=False, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
activation = ReluSquared() if relu_squared else nn.GELU() | |
project_in = ( | |
nn.Sequential(nn.Linear(dim, inner_dim), activation) if not glu else GLU(dim, inner_dim, activation) | |
) | |
self.net = nn.Sequential( | |
project_in, | |
nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(), | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out), | |
) | |
# init last linear layer to 0 | |
if zero_init_output: | |
init_zero_(self.net[-1]) | |
def forward(self, x): | |
return self.net(x) | |
# attention. | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_head=DEFAULT_DIM_HEAD, | |
heads=8, | |
causal=False, | |
talking_heads=False, | |
head_scale=False, | |
collab_heads=False, | |
collab_compression=0.3, | |
sparse_topk=None, | |
use_entmax15=False, | |
num_mem_kv=0, | |
dropout=0.0, | |
on_attn=False, | |
gate_values=False, | |
zero_init_output=False, | |
max_attend_past=None, | |
qk_norm=False, | |
scale_init_value=None, | |
rel_pos_bias=False, | |
rel_pos_num_buckets=32, | |
rel_pos_max_distance=128, | |
): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.causal = causal | |
self.max_attend_past = max_attend_past | |
qk_dim = v_dim = dim_head * heads | |
# collaborative heads | |
self.collab_heads = collab_heads | |
if self.collab_heads: | |
qk_dim = int(collab_compression * qk_dim) | |
self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim)) | |
self.to_q = nn.Linear(dim, qk_dim, bias=False) | |
self.to_k = nn.Linear(dim, qk_dim, bias=False) | |
self.to_v = nn.Linear(dim, v_dim, bias=False) | |
self.dropout = nn.Dropout(dropout) | |
# add GLU gating for aggregated values, from alphafold2 | |
self.to_v_gate = None | |
if gate_values: | |
self.to_v_gate = nn.Linear(dim, v_dim) | |
nn.init.constant_(self.to_v_gate.weight, 0) | |
nn.init.constant_(self.to_v_gate.bias, 1) | |
# cosine sim attention | |
self.qk_norm = qk_norm | |
if qk_norm: | |
scale_init_value = default( | |
scale_init_value, -3 | |
) # if not provided, initialize as though it were sequence length of 1024 | |
self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value) | |
# talking heads | |
self.talking_heads = talking_heads | |
if talking_heads: | |
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) | |
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) | |
# head scaling | |
self.head_scale = head_scale | |
if head_scale: | |
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) | |
# explicit topk sparse attention | |
self.sparse_topk = sparse_topk | |
# entmax | |
self.attn_fn = F.softmax | |
# add memory key / values | |
self.num_mem_kv = num_mem_kv | |
if num_mem_kv > 0: | |
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
# attention on attention | |
self.attn_on_attn = on_attn | |
self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim) | |
self.rel_pos_bias = rel_pos_bias | |
if rel_pos_bias: | |
assert ( | |
rel_pos_num_buckets <= rel_pos_max_distance | |
), "number of relative position buckets must be less than the relative position max distance" | |
self.rel_pos = RelativePositionBias( | |
scale=dim_head**0.5, | |
causal=causal, | |
heads=heads, | |
num_buckets=rel_pos_num_buckets, | |
max_distance=rel_pos_max_distance, | |
) | |
# init output projection 0 | |
if zero_init_output: | |
init_zero_(self.to_out) | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
context_mask=None, | |
attn_mask=None, | |
sinusoidal_emb=None, | |
rotary_pos_emb=None, | |
prev_attn=None, | |
mem=None, | |
layer_past=None, | |
): | |
b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = ( | |
*x.shape, | |
self.heads, | |
self.talking_heads, | |
self.collab_heads, | |
self.head_scale, | |
self.scale, | |
x.device, | |
exists(context), | |
) | |
kv_input = default(context, x) | |
q_input = x | |
k_input = kv_input | |
v_input = kv_input | |
if exists(mem): | |
k_input = torch.cat((mem, k_input), dim=-2) | |
v_input = torch.cat((mem, v_input), dim=-2) | |
if exists(sinusoidal_emb): | |
# in shortformer, the query would start at a position offset depending on the past cached memory | |
offset = k_input.shape[-2] - q_input.shape[-2] | |
q_input = q_input + sinusoidal_emb(q_input, offset=offset) | |
k_input = k_input + sinusoidal_emb(k_input) | |
q = self.to_q(q_input) | |
k = self.to_k(k_input) | |
v = self.to_v(v_input) | |
if not collab_heads: | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) | |
else: | |
q = einsum("b i d, h d -> b h i d", q, self.collab_mixing) | |
k = rearrange(k, "b n d -> b () n d") | |
v = rearrange(v, "b n (h d) -> b h n d", h=h) | |
if layer_past is not None: | |
past_key, past_value = layer_past | |
k = torch.cat([past_key, k], dim=-2) | |
v = torch.cat([past_value, v], dim=-2) | |
k_cache = k | |
v_cache = v | |
if exists(rotary_pos_emb) and not has_context: | |
l = rotary_pos_emb.shape[-1] | |
(ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) | |
ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl)) | |
q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr))) | |
input_mask = None | |
if any(map(exists, (mask, context_mask))): | |
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) | |
k_mask = q_mask if not exists(context) else context_mask | |
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) | |
q_mask = rearrange(q_mask, "b i -> b () i ()") | |
k_mask = rearrange(k_mask, "b j -> b () () j") | |
input_mask = q_mask * k_mask | |
if self.num_mem_kv > 0: | |
mem_k, mem_v = map(lambda t: repeat(t, "h n d -> b h n d", b=b), (self.mem_k, self.mem_v)) | |
k = torch.cat((mem_k, k), dim=-2) | |
v = torch.cat((mem_v, v), dim=-2) | |
if exists(input_mask): | |
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) | |
if collab_heads: | |
k = k.expand(-1, h, -1, -1) | |
if self.qk_norm: | |
q, k = map(l2norm, (q, k)) | |
scale = 1 / (self.scale.exp().clamp(min=1e-2)) | |
dots = einsum("b h i d, b h j d -> b h i j", q, k) * scale | |
mask_value = max_neg_value(dots) | |
if exists(prev_attn): | |
dots = dots + prev_attn | |
pre_softmax_attn = dots.clone() | |
if talking_heads: | |
dots = einsum("b h i j, h k -> b k i j", dots, self.pre_softmax_proj).contiguous() | |
if self.rel_pos_bias: | |
dots = self.rel_pos(dots) | |
if exists(input_mask): | |
dots.masked_fill_(~input_mask, mask_value) | |
del input_mask | |
if exists(attn_mask): | |
assert ( | |
2 <= attn_mask.ndim <= 4 | |
), "attention mask must have greater than 2 dimensions but less than or equal to 4" | |
if attn_mask.ndim == 2: | |
attn_mask = rearrange(attn_mask, "i j -> () () i j") | |
elif attn_mask.ndim == 3: | |
attn_mask = rearrange(attn_mask, "h i j -> () h i j") | |
dots.masked_fill_(~attn_mask, mask_value) | |
if exists(self.max_attend_past): | |
i, j = dots.shape[-2:] | |
range_q = torch.arange(j - i, j, device=device) | |
range_k = torch.arange(j, device=device) | |
dist = rearrange(range_q, "i -> () () i ()") - rearrange(range_k, "j -> () () () j") | |
mask = dist > self.max_attend_past | |
dots.masked_fill_(mask, mask_value) | |
del mask | |
if self.causal: | |
i, j = dots.shape[-2:] | |
r = torch.arange(i, device=device) | |
mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j") | |
mask = F.pad(mask, (j - i, 0), value=False) | |
dots.masked_fill_(mask, mask_value) | |
del mask | |
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: | |
top, _ = dots.topk(self.sparse_topk, dim=-1) | |
vk = top[..., -1].unsqueeze(-1).expand_as(dots) | |
mask = dots < vk | |
dots.masked_fill_(mask, mask_value) | |
del mask | |
attn = self.attn_fn(dots, dim=-1) | |
post_softmax_attn = attn.clone() | |
attn = self.dropout(attn) | |
if talking_heads: | |
attn = einsum("b h i j, h k -> b k i j", attn, self.post_softmax_proj).contiguous() | |
out = einsum("b h i j, b h j d -> b h i d", attn, v) | |
if head_scale: | |
out = out * self.head_scale_params | |
out = rearrange(out, "b h n d -> b n (h d)") | |
if exists(self.to_v_gate): | |
gates = self.to_v_gate(x) | |
out = out * gates.sigmoid() | |
intermediates = Intermediates(pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn) | |
return self.to_out(out), intermediates, k_cache, v_cache | |
class AttentionLayers(nn.Module): | |
def __init__( | |
self, | |
dim, | |
depth, | |
heads=8, | |
causal=False, | |
cross_attend=False, | |
only_cross=False, | |
use_scalenorm=False, | |
use_rms_scaleshift_norm=False, | |
use_rmsnorm=False, | |
use_rezero=False, | |
alibi_pos_bias=False, | |
alibi_num_heads=None, | |
alibi_learned=False, | |
position_infused_attn=False, | |
rotary_pos_emb=False, | |
rotary_emb_dim=None, | |
custom_layers=None, | |
sandwich_coef=None, | |
par_ratio=None, | |
residual_attn=False, | |
cross_residual_attn=False, | |
macaron=False, | |
pre_norm=True, | |
gate_residual=False, | |
scale_residual=False, | |
shift_tokens=0, | |
sandwich_norm=False, | |
use_qk_norm_attn=False, | |
qk_norm_attn_seq_len=None, | |
zero_init_branch_output=False, | |
**kwargs, | |
): | |
super().__init__() | |
ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs) | |
attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs) | |
dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD) | |
self.dim = dim | |
self.depth = depth | |
self.layers = nn.ModuleList([]) | |
self.causal = causal | |
rel_pos_bias = "rel_pos_bias" in attn_kwargs | |
self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb | |
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None | |
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) | |
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None | |
assert not ( | |
alibi_pos_bias and rel_pos_bias | |
), "you can only choose Alibi positional bias or T5 relative positional bias, not both" | |
if alibi_pos_bias: | |
alibi_num_heads = default(alibi_num_heads, heads) | |
assert alibi_num_heads <= heads, "number of ALiBi heads must be less than the total number of heads" | |
alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias | |
self.rel_pos = alibi_pos_klass(heads=alibi_num_heads, bidirectional=not causal) | |
else: | |
self.rel_pos = None | |
assert not (not pre_norm and sandwich_norm), "sandwich norm cannot be used when not using prenorm" | |
self.pre_norm = pre_norm | |
self.sandwich_norm = sandwich_norm | |
self.residual_attn = residual_attn | |
self.cross_residual_attn = cross_residual_attn | |
self.cross_attend = cross_attend | |
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm | |
norm_class = RMSNorm if use_rmsnorm else norm_class | |
norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class | |
norm_fn = partial(norm_class, dim) | |
norm_fn = nn.Identity if use_rezero else norm_fn | |
branch_fn = Rezero if use_rezero else None | |
if cross_attend and not only_cross: | |
default_block = ("a", "c", "f") | |
elif cross_attend and only_cross: | |
default_block = ("c", "f") | |
else: | |
default_block = ("a", "f") | |
if macaron: | |
default_block = ("f",) + default_block | |
# qk normalization | |
if use_qk_norm_attn: | |
attn_scale_init_value = ( | |
-math.log(math.log2(qk_norm_attn_seq_len**2 - qk_norm_attn_seq_len)) | |
if exists(qk_norm_attn_seq_len) | |
else None | |
) | |
attn_kwargs = {**attn_kwargs, "qk_norm": True, "scale_init_value": attn_scale_init_value} | |
# zero init | |
if zero_init_branch_output: | |
attn_kwargs = {**attn_kwargs, "zero_init_output": True} | |
ff_kwargs = {**ff_kwargs, "zero_init_output": True} | |
# calculate layer block order | |
if exists(custom_layers): | |
layer_types = custom_layers | |
elif exists(par_ratio): | |
par_depth = depth * len(default_block) | |
assert 1 < par_ratio <= par_depth, "par ratio out of range" | |
default_block = tuple(filter(not_equals("f"), default_block)) | |
par_attn = par_depth // par_ratio | |
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper | |
par_width = (depth_cut + depth_cut // par_attn) // par_attn | |
assert len(default_block) <= par_width, "default block is too large for par_ratio" | |
par_block = default_block + ("f",) * (par_width - len(default_block)) | |
par_head = par_block * par_attn | |
layer_types = par_head + ("f",) * (par_depth - len(par_head)) | |
elif exists(sandwich_coef): | |
assert sandwich_coef > 0 and sandwich_coef <= depth, "sandwich coefficient should be less than the depth" | |
layer_types = ("a",) * sandwich_coef + default_block * (depth - sandwich_coef) + ("f",) * sandwich_coef | |
else: | |
layer_types = default_block * depth | |
self.layer_types = layer_types | |
self.num_attn_layers = len(list(filter(equals("a"), layer_types))) | |
# calculate token shifting | |
shift_tokens = cast_tuple(shift_tokens, len(layer_types)) | |
# iterate and construct layers | |
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): | |
is_last_layer = ind == (len(self.layer_types) - 1) | |
if layer_type == "a": | |
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) | |
elif layer_type == "c": | |
layer = Attention(dim, heads=heads, **attn_kwargs) | |
elif layer_type == "f": | |
layer = FeedForward(dim, **ff_kwargs) | |
layer = layer if not macaron else Scale(0.5, layer) | |
else: | |
raise Exception(f"invalid layer type {layer_type}") | |
if layer_shift_tokens > 0: | |
shift_range_upper = layer_shift_tokens + 1 | |
shift_range_lower = -layer_shift_tokens if not causal else 0 | |
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) | |
if exists(branch_fn): | |
layer = branch_fn(layer) | |
residual_fn = GRUGating if gate_residual else Residual | |
residual = residual_fn(dim, scale_residual=scale_residual) | |
layer_uses_qk_norm = use_qk_norm_attn and layer_type in ("a", "c") | |
pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None | |
post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None | |
post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None | |
norms = nn.ModuleList([pre_branch_norm, post_branch_norm, post_main_norm]) | |
self.layers.append(nn.ModuleList([norms, layer, residual])) | |
def forward( | |
self, | |
x, | |
context=None, | |
full_context=None, # for passing a list of hidden states from an encoder | |
mask=None, | |
context_mask=None, | |
attn_mask=None, | |
mems=None, | |
return_hiddens=False, | |
norm_scale_shift_inp=None, | |
past_key_values=None, | |
expected_seq_len=None, | |
): | |
assert not ( | |
self.cross_attend ^ (exists(context) or exists(full_context)) | |
), "context must be passed in if cross_attend is set to True" | |
assert context is None or full_context is None, "only one of full_context or context can be provided" | |
hiddens = [] | |
intermediates = [] | |
prev_attn = None | |
prev_cross_attn = None | |
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers | |
norm_args = {} | |
if exists(norm_scale_shift_inp): | |
norm_args["norm_scale_shift_inp"] = norm_scale_shift_inp | |
rotary_pos_emb = None | |
if exists(self.rotary_pos_emb): | |
if not self.training and self.causal: | |
assert ( | |
expected_seq_len is not None | |
), "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`" | |
elif expected_seq_len is None: | |
expected_seq_len = 0 | |
seq_len = x.shape[1] | |
if past_key_values is not None: | |
seq_len += past_key_values[0][0].shape[-2] | |
max_rotary_emb_length = max( | |
list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) + [expected_seq_len] | |
) | |
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) | |
present_key_values = [] | |
cross_attn_count = 0 | |
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): | |
if layer_type == "a": | |
layer_mem = mems.pop(0) if mems else None | |
residual = x | |
pre_branch_norm, post_branch_norm, post_main_norm = norm | |
if exists(pre_branch_norm): | |
x = pre_branch_norm(x, **norm_args) | |
if layer_type == "a" or layer_type == "c": | |
if past_key_values is not None: | |
layer_kv = past_key_values.pop(0) | |
layer_past = tuple(s.to(x.device) for s in layer_kv) | |
else: | |
layer_past = None | |
if layer_type == "a": | |
out, inter, k, v = block( | |
x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb, prev_attn, layer_mem, layer_past | |
) | |
elif layer_type == "c": | |
if exists(full_context): | |
out, inter, k, v = block( | |
x, | |
full_context[cross_attn_count], | |
mask, | |
context_mask, | |
None, | |
None, | |
None, | |
prev_attn, | |
None, | |
layer_past, | |
) | |
else: | |
out, inter, k, v = block( | |
x, context, mask, context_mask, None, None, None, prev_attn, None, layer_past | |
) | |
elif layer_type == "f": | |
out = block(x) | |
if layer_type == "a" or layer_type == "c" and present_key_values is not None: | |
present_key_values.append((k.detach(), v.detach())) | |
if exists(post_branch_norm): | |
out = post_branch_norm(out, **norm_args) | |
x = residual_fn(out, residual) | |
if layer_type in ("a", "c"): | |
intermediates.append(inter) | |
if layer_type == "a" and self.residual_attn: | |
prev_attn = inter.pre_softmax_attn | |
elif layer_type == "c" and self.cross_residual_attn: | |
prev_cross_attn = inter.pre_softmax_attn | |
if exists(post_main_norm): | |
x = post_main_norm(x, **norm_args) | |
if layer_type == "c": | |
cross_attn_count += 1 | |
if layer_type == "f": | |
hiddens.append(x) | |
if return_hiddens: | |
intermediates = LayerIntermediates( | |
hiddens=hiddens, attn_intermediates=intermediates, past_key_values=present_key_values | |
) | |
return x, intermediates | |
return x | |
class Encoder(AttentionLayers): | |
def __init__(self, **kwargs): | |
assert "causal" not in kwargs, "cannot set causality on encoder" | |
super().__init__(causal=False, **kwargs) | |
class Decoder(AttentionLayers): | |
def __init__(self, **kwargs): | |
assert "causal" not in kwargs, "cannot set causality on decoder" | |
super().__init__(causal=True, **kwargs) | |
class CrossAttender(AttentionLayers): | |
def __init__(self, **kwargs): | |
super().__init__(cross_attend=True, only_cross=True, **kwargs) | |
class ViTransformerWrapper(nn.Module): | |
def __init__(self, *, image_size, patch_size, attn_layers, num_classes=None, dropout=0.0, emb_dropout=0.0): | |
super().__init__() | |
assert isinstance(attn_layers, Encoder), "attention layers must be an Encoder" | |
assert image_size % patch_size == 0, "image dimensions must be divisible by the patch size" | |
dim = attn_layers.dim | |
num_patches = (image_size // patch_size) ** 2 | |
patch_dim = 3 * patch_size**2 | |
self.patch_size = patch_size | |
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | |
self.patch_to_embedding = nn.Linear(patch_dim, dim) | |
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | |
self.dropout = nn.Dropout(emb_dropout) | |
self.attn_layers = attn_layers | |
self.norm = nn.LayerNorm(dim) | |
self.mlp_head = FeedForward(dim, dim_out=num_classes, dropout=dropout) if exists(num_classes) else None | |
def forward(self, img, return_embeddings=False): | |
p = self.patch_size | |
x = rearrange(img, "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=p, p2=p) | |
x = self.patch_to_embedding(x) | |
b, n, _ = x.shape | |
cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + self.pos_embedding[:, : (n + 1)] | |
x = self.dropout(x) | |
x = self.attn_layers(x) | |
x = self.norm(x) | |
if not exists(self.mlp_head) or return_embeddings: | |
return x | |
return self.mlp_head(x[:, 0]) | |
class TransformerWrapper(nn.Module): | |
def __init__( | |
self, | |
*, | |
num_tokens, | |
max_seq_len, | |
attn_layers, | |
emb_dim=None, | |
max_mem_len=0.0, | |
shift_mem_down=0, | |
emb_dropout=0.0, | |
num_memory_tokens=None, | |
tie_embedding=False, | |
use_pos_emb=True, | |
): | |
super().__init__() | |
assert isinstance(attn_layers, AttentionLayers), "attention layers must be one of Encoder or Decoder" | |
dim = attn_layers.dim | |
emb_dim = default(emb_dim, dim) | |
self.max_seq_len = max_seq_len | |
self.max_mem_len = max_mem_len | |
self.shift_mem_down = shift_mem_down | |
self.token_emb = nn.Embedding(num_tokens, emb_dim) | |
self.pos_emb = ( | |
AbsolutePositionalEmbedding(emb_dim, max_seq_len) | |
if (use_pos_emb and not attn_layers.has_pos_emb) | |
else always(0) | |
) | |
self.emb_dropout = nn.Dropout(emb_dropout) | |
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() | |
self.attn_layers = attn_layers | |
self.norm = nn.LayerNorm(dim) | |
self.init_() | |
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() | |
# memory tokens (like [cls]) from Memory Transformers paper | |
num_memory_tokens = default(num_memory_tokens, 0) | |
self.num_memory_tokens = num_memory_tokens | |
if num_memory_tokens > 0: | |
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) | |
def init_(self): | |
nn.init.kaiming_normal_(self.token_emb.weight) | |
def forward( | |
self, | |
x, | |
return_embeddings=False, | |
mask=None, | |
return_hiddens=False, | |
return_attn=False, | |
mems=None, | |
use_cache=False, | |
**kwargs, | |
): | |
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens | |
x = self.token_emb(x) | |
x = x + self.pos_emb(x) | |
x = self.emb_dropout(x) | |
x = self.project_emb(x) | |
if num_mem > 0: | |
mem = repeat(self.memory_tokens, "n d -> b n d", b=b) | |
x = torch.cat((mem, x), dim=1) | |
# auto-handle masking after appending memory tokens | |
if exists(mask): | |
mask = F.pad(mask, (num_mem, 0), value=True) | |
if self.shift_mem_down and exists(mems): | |
mems_l, mems_r = mems[: self.shift_mem_down], mems[self.shift_mem_down :] | |
mems = [*mems_r, *mems_l] | |
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) | |
x = self.norm(x) | |
mem, x = x[:, :num_mem], x[:, num_mem:] | |
out = self.to_logits(x) if not return_embeddings else x | |
if return_hiddens: | |
hiddens = intermediates.hiddens | |
return out, hiddens | |
res = [out] | |
if return_attn: | |
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) | |
res.append(attn_maps) | |
if use_cache: | |
res.append(intermediates.past_key_values) | |
if len(res) > 1: | |
return tuple(res) | |
return res[0] | |
class ContinuousTransformerWrapper(nn.Module): | |
def __init__( | |
self, *, max_seq_len, attn_layers, dim_in=None, dim_out=None, emb_dim=None, emb_dropout=0.0, use_pos_emb=True | |
): | |
super().__init__() | |
assert isinstance(attn_layers, AttentionLayers), "attention layers must be one of Encoder or Decoder" | |
dim = attn_layers.dim | |
self.max_seq_len = max_seq_len | |
self.pos_emb = ( | |
AbsolutePositionalEmbedding(dim, max_seq_len) | |
if (use_pos_emb and not attn_layers.has_pos_emb) | |
else always(0) | |
) | |
self.emb_dropout = nn.Dropout(emb_dropout) | |
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() | |
self.attn_layers = attn_layers | |
self.norm = nn.LayerNorm(dim) | |
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() | |
def forward(self, x, return_embeddings=False, mask=None, return_attn=False, mems=None, use_cache=False, **kwargs): | |
b, n, _, device = *x.shape, x.device | |
x = self.project_in(x) | |
x = x + self.pos_emb(x) | |
x = self.emb_dropout(x) | |
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) | |
x = self.norm(x) | |
out = self.project_out(x) if not return_embeddings else x | |
res = [out] | |
if return_attn: | |
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) | |
res.append(attn_maps) | |
if use_cache: | |
res.append(intermediates.past_key_values) | |
if len(res) > 1: | |
return tuple(res) | |
return res[0] | |