RVC / core.py
r3gm's picture
update
1397f77
import os
import sys
import json
import argparse
import subprocess
import spaces
now_dir = os.getcwd()
sys.path.append(now_dir)
from rvc.configs.config import Config
from rvc.lib.tools.prerequisites_download import prequisites_download_pipeline
from rvc.infer.infer import infer_pipeline
from rvc.lib.tools.model_download import model_download_pipeline
config = Config()
current_script_directory = os.path.dirname(os.path.realpath(__file__))
logs_path = os.path.join(current_script_directory, "logs")
# Get TTS Voices
with open(os.path.join("rvc", "lib", "tools", "tts_voices.json"), "r") as f:
voices_data = json.load(f)
locales = list({voice["Locale"] for voice in voices_data})
# Infer
@spaces.GPU
def run_infer_script(
f0up_key,
filter_radius,
index_rate,
rms_mix_rate,
protect,
hop_length,
f0method,
input_path,
output_path,
pth_path,
index_path,
split_audio,
f0autotune,
clean_audio,
clean_strength,
export_format,
embedder_model,
embedder_model_custom,
upscale_audio,
):
f0autotune = "True" if str(f0autotune) == "True" else "False"
clean_audio = "True" if str(clean_audio) == "True" else "False"
upscale_audio = "True" if str(upscale_audio) == "True" else "False"
infer_pipeline(
f0up_key,
filter_radius,
index_rate,
rms_mix_rate,
protect,
hop_length,
f0method,
input_path,
output_path,
pth_path,
index_path,
split_audio,
f0autotune,
clean_audio,
clean_strength,
export_format,
embedder_model,
embedder_model_custom,
upscale_audio,
)
return f"File {input_path} inferred successfully.", output_path.replace(
".wav", f".{export_format.lower()}"
)
# Batch infer
@spaces.GPU
def run_batch_infer_script(
f0up_key,
filter_radius,
index_rate,
rms_mix_rate,
protect,
hop_length,
f0method,
input_folder,
output_folder,
pth_path,
index_path,
split_audio,
f0autotune,
clean_audio,
clean_strength,
export_format,
embedder_model,
embedder_model_custom,
upscale_audio,
):
f0autotune = "True" if str(f0autotune) == "True" else "False"
clean_audio = "True" if str(clean_audio) == "True" else "False"
upscale_audio = "True" if str(upscale_audio) == "True" else "False"
audio_files = [
f for f in os.listdir(input_folder) if f.endswith((".mp3", ".wav", ".flac"))
]
print(f"Detected {len(audio_files)} audio files for inference.")
for audio_file in audio_files:
if "_output" in audio_file:
pass
else:
input_path = os.path.join(input_folder, audio_file)
output_file_name = os.path.splitext(os.path.basename(audio_file))[0]
output_path = os.path.join(
output_folder,
f"{output_file_name}_output{os.path.splitext(audio_file)[1]}",
)
print(f"Inferring {input_path}...")
infer_pipeline(
f0up_key,
filter_radius,
index_rate,
rms_mix_rate,
protect,
hop_length,
f0method,
input_path,
output_path,
pth_path,
index_path,
split_audio,
f0autotune,
clean_audio,
clean_strength,
export_format,
embedder_model,
embedder_model_custom,
upscale_audio,
)
return f"Files from {input_folder} inferred successfully."
# TTS
@spaces.GPU
def run_tts_script(
tts_text,
tts_voice,
tts_rate,
f0up_key,
filter_radius,
index_rate,
rms_mix_rate,
protect,
hop_length,
f0method,
output_tts_path,
output_rvc_path,
pth_path,
index_path,
split_audio,
f0autotune,
clean_audio,
clean_strength,
export_format,
embedder_model,
embedder_model_custom,
upscale_audio,
):
f0autotune = "True" if str(f0autotune) == "True" else "False"
clean_audio = "True" if str(clean_audio) == "True" else "False"
upscale_audio = "True" if str(upscale_audio) == "True" else "False"
tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py")
if os.path.exists(output_tts_path):
os.remove(output_tts_path)
command_tts = [
"python",
tts_script_path,
tts_text,
tts_voice,
str(tts_rate),
output_tts_path,
]
subprocess.run(command_tts)
infer_pipeline(
f0up_key,
filter_radius,
index_rate,
rms_mix_rate,
protect,
hop_length,
f0method,
output_tts_path,
output_rvc_path,
pth_path,
index_path,
split_audio,
f0autotune,
clean_audio,
clean_strength,
export_format,
embedder_model,
embedder_model_custom,
upscale_audio,
)
return f"Text {tts_text} synthesized successfully.", output_rvc_path.replace(
".wav", f".{export_format.lower()}"
)
# Download
def run_download_script(model_link):
model_download_pipeline(model_link)
return f"Model downloaded successfully."
# Prerequisites
def run_prerequisites_script(pretraineds_v1, pretraineds_v2, models, exe):
prequisites_download_pipeline(pretraineds_v1, pretraineds_v2, models, exe)
return "Prerequisites installed successfully."
# Parse arguments
def parse_arguments():
parser = argparse.ArgumentParser(
description="Run the main.py script with specific parameters."
)
subparsers = parser.add_subparsers(
title="subcommands", dest="mode", help="Choose a mode"
)
# Parser for 'infer' mode
infer_parser = subparsers.add_parser("infer", help="Run inference")
infer_parser.add_argument(
"--f0up_key",
type=str,
help="Value for f0up_key",
choices=[str(i) for i in range(-24, 25)],
default="0",
)
infer_parser.add_argument(
"--filter_radius",
type=str,
help="Value for filter_radius",
choices=[str(i) for i in range(11)],
default="3",
)
infer_parser.add_argument(
"--index_rate",
type=str,
help="Value for index_rate",
choices=[str(i / 10) for i in range(11)],
default="0.3",
)
infer_parser.add_argument(
"--rms_mix_rate",
type=str,
help="Value for rms_mix_rate",
choices=[str(i / 10) for i in range(11)],
default="1",
)
infer_parser.add_argument(
"--protect",
type=str,
help="Value for protect",
choices=[str(i / 10) for i in range(6)],
default="0.33",
)
infer_parser.add_argument(
"--hop_length",
type=str,
help="Value for hop_length",
choices=[str(i) for i in range(1, 513)],
default="128",
)
infer_parser.add_argument(
"--f0method",
type=str,
help="Value for f0method",
choices=[
"pm",
"harvest",
"dio",
"crepe",
"crepe-tiny",
"rmvpe",
"fcpe",
"hybrid[crepe+rmvpe]",
"hybrid[crepe+fcpe]",
"hybrid[rmvpe+fcpe]",
"hybrid[crepe+rmvpe+fcpe]",
],
default="rmvpe",
)
infer_parser.add_argument("--input_path", type=str, help="Input path")
infer_parser.add_argument("--output_path", type=str, help="Output path")
infer_parser.add_argument("--pth_path", type=str, help="Path to the .pth file")
infer_parser.add_argument(
"--index_path",
type=str,
help="Path to the .index file",
)
infer_parser.add_argument(
"--split_audio",
type=str,
help="Enable split audio",
choices=["True", "False"],
default="False",
)
infer_parser.add_argument(
"--f0autotune",
type=str,
help="Enable autotune",
choices=["True", "False"],
default="False",
)
infer_parser.add_argument(
"--clean_audio",
type=str,
help="Enable clean audio",
choices=["True", "False"],
default="False",
)
infer_parser.add_argument(
"--clean_strength",
type=str,
help="Value for clean_strength",
choices=[str(i / 10) for i in range(11)],
default="0.7",
)
infer_parser.add_argument(
"--export_format",
type=str,
help="Export format",
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"],
default="WAV",
)
infer_parser.add_argument(
"--embedder_model",
type=str,
help="Embedder model",
choices=["contentvec", "hubert", "custom"],
default="hubert",
)
infer_parser.add_argument(
"--embedder_model_custom",
type=str,
help="Custom Embedder model",
default=None,
)
infer_parser.add_argument(
"--upscale_audio",
type=str,
help="Enable audio upscaling",
choices=["True", "False"],
default="False",
)
# Parser for 'batch_infer' mode
batch_infer_parser = subparsers.add_parser(
"batch_infer", help="Run batch inference"
)
batch_infer_parser.add_argument(
"--f0up_key",
type=str,
help="Value for f0up_key",
choices=[str(i) for i in range(-24, 25)],
default="0",
)
batch_infer_parser.add_argument(
"--filter_radius",
type=str,
help="Value for filter_radius",
choices=[str(i) for i in range(11)],
default="3",
)
batch_infer_parser.add_argument(
"--index_rate",
type=str,
help="Value for index_rate",
choices=[str(i / 10) for i in range(11)],
default="0.3",
)
batch_infer_parser.add_argument(
"--rms_mix_rate",
type=str,
help="Value for rms_mix_rate",
choices=[str(i / 10) for i in range(11)],
default="1",
)
batch_infer_parser.add_argument(
"--protect",
type=str,
help="Value for protect",
choices=[str(i / 10) for i in range(6)],
default="0.33",
)
batch_infer_parser.add_argument(
"--hop_length",
type=str,
help="Value for hop_length",
choices=[str(i) for i in range(1, 513)],
default="128",
)
batch_infer_parser.add_argument(
"--f0method",
type=str,
help="Value for f0method",
choices=[
"pm",
"harvest",
"dio",
"crepe",
"crepe-tiny",
"rmvpe",
"fcpe",
"hybrid[crepe+rmvpe]",
"hybrid[crepe+fcpe]",
"hybrid[rmvpe+fcpe]",
"hybrid[crepe+rmvpe+fcpe]",
],
default="rmvpe",
)
batch_infer_parser.add_argument("--input_folder", type=str, help="Input folder")
batch_infer_parser.add_argument("--output_folder", type=str, help="Output folder")
batch_infer_parser.add_argument(
"--pth_path", type=str, help="Path to the .pth file"
)
batch_infer_parser.add_argument(
"--index_path",
type=str,
help="Path to the .index file",
)
batch_infer_parser.add_argument(
"--split_audio",
type=str,
help="Enable split audio",
choices=["True", "False"],
default="False",
)
batch_infer_parser.add_argument(
"--f0autotune",
type=str,
help="Enable autotune",
choices=["True", "False"],
default="False",
)
batch_infer_parser.add_argument(
"--clean_audio",
type=str,
help="Enable clean audio",
choices=["True", "False"],
default="False",
)
batch_infer_parser.add_argument(
"--clean_strength",
type=str,
help="Value for clean_strength",
choices=[str(i / 10) for i in range(11)],
default="0.7",
)
batch_infer_parser.add_argument(
"--export_format",
type=str,
help="Export format",
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"],
default="WAV",
)
batch_infer_parser.add_argument(
"--embedder_model",
type=str,
help="Embedder model",
choices=["contentvec", "hubert", "custom"],
default="hubert",
)
batch_infer_parser.add_argument(
"--embedder_model_custom",
type=str,
help="Custom Embedder model",
default=None,
)
batch_infer_parser.add_argument(
"--upscale_audio",
type=str,
help="Enable audio upscaling",
choices=["True", "False"],
default="False",
)
# Parser for 'tts' mode
tts_parser = subparsers.add_parser("tts", help="Run TTS")
tts_parser.add_argument(
"--tts_text",
type=str,
help="Text to be synthesized",
)
tts_parser.add_argument(
"--tts_voice",
type=str,
help="Voice to be used",
choices=locales,
)
tts_parser.add_argument(
"--tts_rate",
type=str,
help="Increase or decrease TTS speed",
choices=[str(i) for i in range(-100, 100)],
default="0",
)
tts_parser.add_argument(
"--f0up_key",
type=str,
help="Value for f0up_key",
choices=[str(i) for i in range(-24, 25)],
default="0",
)
tts_parser.add_argument(
"--filter_radius",
type=str,
help="Value for filter_radius",
choices=[str(i) for i in range(11)],
default="3",
)
tts_parser.add_argument(
"--index_rate",
type=str,
help="Value for index_rate",
choices=[str(i / 10) for i in range(11)],
default="0.3",
)
tts_parser.add_argument(
"--rms_mix_rate",
type=str,
help="Value for rms_mix_rate",
choices=[str(i / 10) for i in range(11)],
default="1",
)
tts_parser.add_argument(
"--protect",
type=str,
help="Value for protect",
choices=[str(i / 10) for i in range(6)],
default="0.33",
)
tts_parser.add_argument(
"--hop_length",
type=str,
help="Value for hop_length",
choices=[str(i) for i in range(1, 513)],
default="128",
)
tts_parser.add_argument(
"--f0method",
type=str,
help="Value for f0method",
choices=[
"pm",
"harvest",
"dio",
"crepe",
"crepe-tiny",
"rmvpe",
"fcpe",
"hybrid[crepe+rmvpe]",
"hybrid[crepe+fcpe]",
"hybrid[rmvpe+fcpe]",
"hybrid[crepe+rmvpe+fcpe]",
],
default="rmvpe",
)
tts_parser.add_argument("--output_tts_path", type=str, help="Output tts path")
tts_parser.add_argument("--output_rvc_path", type=str, help="Output rvc path")
tts_parser.add_argument("--pth_path", type=str, help="Path to the .pth file")
tts_parser.add_argument(
"--index_path",
type=str,
help="Path to the .index file",
)
tts_parser.add_argument(
"--split_audio",
type=str,
help="Enable split audio",
choices=["True", "False"],
default="False",
)
tts_parser.add_argument(
"--f0autotune",
type=str,
help="Enable autotune",
choices=["True", "False"],
default="False",
)
tts_parser.add_argument(
"--clean_audio",
type=str,
help="Enable clean audio",
choices=["True", "False"],
default="False",
)
tts_parser.add_argument(
"--clean_strength",
type=str,
help="Value for clean_strength",
choices=[str(i / 10) for i in range(11)],
default="0.7",
)
tts_parser.add_argument(
"--export_format",
type=str,
help="Export format",
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"],
default="WAV",
)
tts_parser.add_argument(
"--embedder_model",
type=str,
help="Embedder model",
choices=["contentvec", "hubert", "custom"],
default="hubert",
)
tts_parser.add_argument(
"--embedder_model_custom",
type=str,
help="Custom Embedder model",
default=None,
)
tts_parser.add_argument(
"--upscale_audio",
type=str,
help="Enable audio upscaling",
choices=["True", "False"],
default="False",
)
# Parser for 'download' mode
download_parser = subparsers.add_parser("download", help="Download models")
download_parser.add_argument(
"--model_link",
type=str,
help="Link of the model",
)
# Parser for 'prerequisites' mode
prerequisites_parser = subparsers.add_parser(
"prerequisites", help="Install prerequisites"
)
prerequisites_parser.add_argument(
"--pretraineds_v1",
type=str,
choices=["True", "False"],
default="True",
help="Download pretrained models for v1",
)
prerequisites_parser.add_argument(
"--pretraineds_v2",
type=str,
choices=["True", "False"],
default="True",
help="Download pretrained models for v2",
)
prerequisites_parser.add_argument(
"--models",
type=str,
choices=["True", "False"],
default="True",
help="Donwload models",
)
prerequisites_parser.add_argument(
"--exe",
type=str,
choices=["True", "False"],
default="True",
help="Download executables",
)
return parser.parse_args()
def main():
if len(sys.argv) == 1:
print("Please run the script with '-h' for more information.")
sys.exit(1)
args = parse_arguments()
try:
if args.mode == "infer":
run_infer_script(
str(args.f0up_key),
str(args.filter_radius),
str(args.index_rate),
str(args.rms_mix_rate),
str(args.protect),
str(args.hop_length),
str(args.f0method),
str(args.input_path),
str(args.output_path),
str(args.pth_path),
str(args.index_path),
str(args.split_audio),
str(args.f0autotune),
str(args.clean_audio),
str(args.clean_strength),
str(args.export_format),
str(args.embedder_model),
str(args.embedder_model_custom),
str(args.upscale_audio),
)
elif args.mode == "batch_infer":
run_batch_infer_script(
str(args.f0up_key),
str(args.filter_radius),
str(args.index_rate),
str(args.rms_mix_rate),
str(args.protect),
str(args.hop_length),
str(args.f0method),
str(args.input_folder),
str(args.output_folder),
str(args.pth_path),
str(args.index_path),
str(args.split_audio),
str(args.f0autotune),
str(args.clean_audio),
str(args.clean_strength),
str(args.export_format),
str(args.embedder_model),
str(args.embedder_model_custom),
str(args.upscale_audio),
)
elif args.mode == "tts":
run_tts_script(
str(args.tts_text),
str(args.tts_voice),
str(args.tts_rate),
str(args.f0up_key),
str(args.filter_radius),
str(args.index_rate),
str(args.rms_mix_rate),
str(args.protect),
str(args.hop_length),
str(args.f0method),
str(args.output_tts_path),
str(args.output_rvc_path),
str(args.pth_path),
str(args.index_path),
str(args.split_audio),
str(args.f0autotune),
str(args.clean_audio),
str(args.clean_strength),
str(args.export_format),
str(args.embedder_model),
str(args.embedder_model_custom),
str(args.upscale_audio),
)
elif args.mode == "download":
run_download_script(
str(args.model_link),
)
elif args.mode == "prerequisites":
run_prerequisites_script(
str(args.pretraineds_v1),
str(args.pretraineds_v2),
str(args.models),
str(args.exe),
)
except Exception as error:
print(f"Error: {error}")
if __name__ == "__main__":
main()