Spaces:
Runtime error
Runtime error
File size: 14,984 Bytes
31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import os
import wget
import math
import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
from scipy import linalg
import torch
from .motion_encoder import VAESKConv
class L1div(object):
def __init__(self):
self.counter = 0
self.sum = 0
def run(self, results):
self.counter += results.shape[0]
mean = np.mean(results, 0)
for i in range(results.shape[0]):
results[i, :] = abs(results[i, :] - mean)
sum_l1 = np.sum(results)
self.sum += sum_l1
def avg(self):
return self.sum/self.counter
def reset(self):
self.counter = 0
self.sum = 0
class SRGR(object):
def __init__(self, threshold=0.1, joints=47, joint_dim=3):
self.threshold = threshold
self.pose_dimes = joints
self.joint_dim = joint_dim
self.counter = 0
self.sum = 0
def run(self, results, targets, semantic=None, verbose=False):
if semantic is None:
semantic = np.ones(results.shape[0])
avg_weight = 1.0
else:
# srgr == 0.165 when all success, scale range to [0, 1]
avg_weight = 0.165
results = results.reshape(-1, self.pose_dimes, self.joint_dim)
targets = targets.reshape(-1, self.pose_dimes, self.joint_dim)
semantic = semantic.reshape(-1)
diff = np.linalg.norm(results-targets, axis=2) # T, J
if verbose: print(diff)
success = np.where(diff<self.threshold, 1.0, 0.0)
for i in range(success.shape[0]):
success[i, :] *= semantic[i] * (1/avg_weight)
rate = np.sum(success)/(success.shape[0]*success.shape[1])
self.counter += success.shape[0]
self.sum += (rate*success.shape[0])
return rate
def avg(self):
return self.sum/self.counter
def reset(self):
self.counter = 0
self.sum = 0
class BC(object):
def __init__(self, download_path=None, sigma=0.3, order=7, upper_body=[3,6,9,12,13,14,15,16,17,18,19,20,21]):
self.sigma = sigma
self.order = order
self.upper_body = upper_body
self.pose_data = []
if download_path is not None:
os.makedirs(download_path, exist_ok=True)
model_file_path = os.path.join(download_path, "mean_vel_smplxflame_30.npy")
if not os.path.exists(model_file_path):
print(f"Downloading {model_file_path}")
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/mean_vel_smplxflame_30.npy", model_file_path)
self.mmae = np.load(os.path.join(download_path, "mean_vel_smplxflame_30.npy")) if download_path is not None else None
self.threshold = 0.10
self.counter = 0
self.sum = 0
def load_audio(self, wave, t_start=None, t_end=None, without_file=False, sr_audio=16000):
hop_length = 512
if without_file:
y = wave
else:
y, sr = librosa.load(wave, sr=sr_audio)
short_y = y[t_start:t_end] if t_start is not None else y
onset_t = librosa.onset.onset_detect(y=short_y, sr=sr_audio, hop_length=hop_length, units='time')
return onset_t
def load_pose(self, pose, t_start, t_end, pose_fps, without_file=False):
data_each_file = []
if without_file:
for line_data_np in pose:
data_each_file.append(line_data_np)
else:
with open(pose, "r") as f:
for i, line_data in enumerate(f.readlines()):
if i < 432:
continue
line_data_np = np.fromstring(line_data, sep=" ")
if pose_fps == 15 and i % 2 == 0:
continue
data_each_file.append(np.concatenate([line_data_np[30:39], line_data_np[112:121]], 0))
data_each_file = np.array(data_each_file)# T*165
# print(data_each_file.shape)
joints = data_each_file.transpose(1, 0)
dt = 1 / pose_fps
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
vel = np.concatenate([init_vel, middle_vel, final_vel], 1).transpose(1, 0).reshape(data_each_file.shape[0], -1, 3)
# print(vel.shape)
if self.mmae is not None:
vel = np.linalg.norm(vel, axis=2) / self.mmae
else:
print("Warning: mmae is not provided, using max value of vel as mmae")
self.mmae = np.linalg.norm(vel, axis=2).max()
vel = np.linalg.norm(vel, axis=2) / self.mmae
# print(vel.shape) # T*J
beat_vel_all = []
for i in range(vel.shape[1]):
vel_mask = np.where(vel[:, i] > self.threshold)
beat_vel = argrelextrema(vel[t_start:t_end, i], np.less, order=self.order)
beat_vel_list = [j for j in beat_vel[0] if j in vel_mask[0]]
beat_vel_all.append(np.array(beat_vel_list))
return beat_vel_all
def load_data(self, wave, pose, t_start, t_end, pose_fps):
onset_raw = self.load_audio(wave, t_start, t_end)
beat_vel_all = self.load_pose(pose, t_start, t_end, pose_fps)
return onset_raw, beat_vel_all
def eval_random_pose(self, wave, pose, t_start, t_end, pose_fps, num_random=60):
onset_raw = self.load_audio(wave, t_start, t_end)
dur = t_end - t_start
for i in range(num_random):
beat_vel_all = self.load_pose(pose, i, i+dur, pose_fps)
dis_all_b2a = self.calculate_align(onset_raw, beat_vel_all)
print(f"{i}s: ", dis_all_b2a)
@staticmethod
def plot_onsets(audio, sr, onset_times_1, onset_times_2):
fig, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True)
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[0])
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[1])
for onset in onset_times_1:
axarr[0].axvline(onset, color='r', linestyle='--', alpha=0.9, label='Onset Method 1')
axarr[0].legend()
axarr[0].set(title='Onset Method 1', xlabel='', ylabel='Amplitude')
for onset in onset_times_2:
axarr[1].axvline(onset, color='b', linestyle='-', alpha=0.7, label='Onset Method 2')
axarr[1].legend()
axarr[1].set(title='Onset Method 2', xlabel='Time (s)', ylabel='Amplitude')
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys())
plt.title("Audio waveform with Onsets")
plt.savefig("./onset.png", dpi=500)
def audio_beat_vis(self, onset_raw, onset_bt, onset_bt_rms):
fig, ax = plt.subplots(nrows=4, sharex=True)
librosa.display.specshow(librosa.amplitude_to_db(self.S, ref=np.max), y_axis='log', x_axis='time', ax=ax[0])
ax[1].plot(self.times, self.oenv, label='Onset strength')
ax[1].vlines(librosa.frames_to_time(onset_raw), 0, self.oenv.max(), label='Raw onsets', color='r')
ax[1].legend()
ax[2].vlines(librosa.frames_to_time(onset_bt), 0, self.oenv.max(), label='Backtracked', color='r')
ax[2].legend()
ax[3].vlines(librosa.frames_to_time(onset_bt_rms), 0, self.oenv.max(), label='Backtracked (RMS)', color='r')
ax[3].legend()
fig.savefig("./onset.png", dpi=500)
@staticmethod
def motion_frames2time(vel, offset, pose_fps):
return vel / pose_fps + offset
@staticmethod
def GAHR(a, b, sigma):
dis_all_b2a = 0
for b_each in b:
l2_min = min(abs(a_each - b_each) for a_each in a)
dis_all_b2a += math.exp(-(l2_min ** 2) / (2 * sigma ** 2))
return dis_all_b2a / len(b)
@staticmethod
def fix_directed_GAHR(a, b, sigma):
a = BC.motion_frames2time(a, 0, 30)
b = BC.motion_frames2time(b, 0, 30)
a = [0] + a + [len(a)/30]
b = [0] + b + [len(b)/30]
return BC.GAHR(a, b, sigma)
def calculate_align(self, onset_bt_rms, beat_vel, pose_fps=30):
avg_dis_all_b2a_list = []
for its, beat_vel_each in enumerate(beat_vel):
if its not in self.upper_body:
continue
if beat_vel_each.size == 0:
avg_dis_all_b2a_list.append(0)
continue
pose_bt = self.motion_frames2time(beat_vel_each, 0, pose_fps)
avg_dis_all_b2a_list.append(self.GAHR(pose_bt, onset_bt_rms, self.sigma))
self.counter += 1
self.sum += sum(avg_dis_all_b2a_list) / len(self.upper_body)
def avg(self):
return self.sum/self.counter
def reset(self):
self.counter = 0
self.sum = 0
class Arg(object):
def __init__(self):
self.vae_length = 240
self.vae_test_dim = 330
self.vae_test_len = 32
self.vae_layer = 4
self.vae_test_stride = 20
self.vae_grow = [1, 1, 2, 1]
self.variational = False
class FGD(object):
def __init__(self, download_path="./emage/"):
if download_path is not None:
os.makedirs(download_path, exist_ok=True)
model_file_path = os.path.join(download_path, "AESKConv_240_100.bin")
smplx_model_dir = os.path.join(download_path, "smplx_models", "smplx")
smplx_model_file_path = os.path.join(smplx_model_dir, "SMPLX_NEUTRAL_2020.npz")
if not os.path.exists(model_file_path):
print(f"Downloading {model_file_path}")
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/AESKConv_240_100.bin", model_file_path)
os.makedirs(smplx_model_dir, exist_ok=True)
if not os.path.exists(smplx_model_file_path):
print(f"Downloading {smplx_model_file_path}")
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz", smplx_model_file_path)
args = Arg()
self.eval_model = VAESKConv(args) # Assumes LocalEncoder is defined elsewhere
old_stat = torch.load(download_path+"AESKConv_240_100.bin")["model_state"]
new_stat = {}
for k, v in old_stat.items():
# If 'module.' is in the key, remove it
new_key = k.replace('module.', '') if 'module.' in k else k
new_stat[new_key] = v
self.eval_model.load_state_dict(new_stat)
self.eval_model.eval()
if torch.cuda.is_available():
self.eval_model.cuda()
self.pred_features = []
self.target_features = []
def update(self, pred, target):
"""
Accumulate the feature representations of predictions and targets.
pred: torch.Tensor of predicted data
target: torch.Tensor of target data
"""
self.pred_features.append(self.get_feature(pred).reshape(-1, 240))
self.target_features.append(self.get_feature(target).reshape(-1, 240))
def compute(self):
"""
Compute the Frechet Distance between the accumulated features.
Returns:
frechet_distance (float): The FVD score between prediction and target features.
"""
pred_features = np.concatenate(self.pred_features, axis=0)
target_features = np.concatenate(self.target_features, axis=0)
print(pred_features.shape, target_features.shape)
return self.frechet_distance(pred_features, target_features)
def reset(self):
""" Reset the accumulated feature lists. """
self.pred_features = []
self.target_features = []
def get_feature(self, data):
"""
Pass the data through the evaluation model to get the feature representation.
data: torch.Tensor of data (e.g., predictions or targets)
Returns:
feature: numpy array of extracted features
"""
with torch.no_grad():
if torch.cuda.is_available():
data = data.cuda()
feature = self.eval_model.map2latent(data).cpu().numpy()
return feature
@staticmethod
def frechet_distance(samples_A, samples_B):
"""
Compute the Frechet Distance between two sets of features.
samples_A: numpy array of features from set A (e.g., predictions)
samples_B: numpy array of features from set B (e.g., targets)
Returns:
frechet_dist (float): The Frechet Distance between the two feature sets.
"""
A_mu = np.mean(samples_A, axis=0)
A_sigma = np.cov(samples_A, rowvar=False)
B_mu = np.mean(samples_B, axis=0)
B_sigma = np.cov(samples_B, rowvar=False)
try:
frechet_dist = FGD.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma)
except ValueError:
frechet_dist = 1e+10
return frechet_dist
@staticmethod
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""
Calculate the Frechet Distance between two multivariate Gaussians.
mu1: Mean vector of the first distribution (generated data).
sigma1: Covariance matrix of the first distribution.
mu2: Mean vector of the second distribution (target data).
sigma2: Covariance matrix of the second distribution.
Returns:
Frechet Distance (float)
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
# if not np.isfinite(covmean).all():
# msg = ('Frechet Distance calculation produces singular product; '
# 'adding %s to diagonal of covariance estimates') % eps
# print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError(f'Imaginary component {m}')
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean) |