Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from nets.layer import make_conv_layers, make_linear_layers, make_deconv_layers | |
from utils.transforms import sample_joint_features, soft_argmax_2d, soft_argmax_3d | |
from utils.human_models import smpl_x | |
from config import cfg | |
from mmcv.ops.roi_align import roi_align | |
class PositionNet(nn.Module): | |
def __init__(self, part, feat_dim=768): | |
super(PositionNet, self).__init__() | |
if part == 'body': | |
self.joint_num = len(smpl_x.pos_joint_part['body']) | |
self.hm_shape = cfg.output_hm_shape | |
elif part == 'hand': | |
self.joint_num = len(smpl_x.pos_joint_part['rhand']) | |
self.hm_shape = cfg.output_hand_hm_shape | |
self.conv = make_conv_layers([feat_dim, self.joint_num * self.hm_shape[0]], kernel=1, stride=1, padding=0, bnrelu_final=False) | |
def forward(self, img_feat): | |
joint_hm = self.conv(img_feat).view(-1, self.joint_num, self.hm_shape[0], self.hm_shape[1], self.hm_shape[2]) | |
joint_coord = soft_argmax_3d(joint_hm) | |
joint_hm = F.softmax(joint_hm.view(-1, self.joint_num, self.hm_shape[0] * self.hm_shape[1] * self.hm_shape[2]), 2) | |
joint_hm = joint_hm.view(-1, self.joint_num, self.hm_shape[0], self.hm_shape[1], self.hm_shape[2]) | |
return joint_hm, joint_coord | |
class HandRotationNet(nn.Module): | |
def __init__(self, part, feat_dim = 768): | |
super(HandRotationNet, self).__init__() | |
self.part = part | |
self.joint_num = len(smpl_x.pos_joint_part['rhand']) | |
self.hand_conv = make_conv_layers([feat_dim, 512], kernel=1, stride=1, padding=0) | |
self.hand_pose_out = make_linear_layers([self.joint_num * 515, len(smpl_x.orig_joint_part['rhand']) * 6], relu_final=False) | |
self.feat_dim = feat_dim | |
def forward(self, img_feat, joint_coord_img): | |
batch_size = img_feat.shape[0] | |
img_feat = self.hand_conv(img_feat) | |
img_feat_joints = sample_joint_features(img_feat, joint_coord_img[:, :, :2]) | |
feat = torch.cat((img_feat_joints, joint_coord_img), 2) # batch_size, joint_num, 512+3 | |
hand_pose = self.hand_pose_out(feat.view(batch_size, -1)) | |
return hand_pose | |
class BodyRotationNet(nn.Module): | |
def __init__(self, feat_dim = 768): | |
super(BodyRotationNet, self).__init__() | |
self.joint_num = len(smpl_x.pos_joint_part['body']) | |
self.body_conv = make_linear_layers([feat_dim, 512], relu_final=False) | |
self.root_pose_out = make_linear_layers([self.joint_num * (512+3), 6], relu_final=False) | |
self.body_pose_out = make_linear_layers( | |
[self.joint_num * (512+3), (len(smpl_x.orig_joint_part['body']) - 1) * 6], relu_final=False) # without root | |
self.shape_out = make_linear_layers([feat_dim, smpl_x.shape_param_dim], relu_final=False) | |
self.cam_out = make_linear_layers([feat_dim, 3], relu_final=False) | |
self.feat_dim = feat_dim | |
def forward(self, body_pose_token, shape_token, cam_token, body_joint_img): | |
batch_size = body_pose_token.shape[0] | |
# shape parameter | |
shape_param = self.shape_out(shape_token) | |
# camera parameter | |
cam_param = self.cam_out(cam_token) | |
# body pose parameter | |
body_pose_token = self.body_conv(body_pose_token) | |
body_pose_token = torch.cat((body_pose_token, body_joint_img), 2) | |
root_pose = self.root_pose_out(body_pose_token.view(batch_size, -1)) | |
body_pose = self.body_pose_out(body_pose_token.view(batch_size, -1)) | |
return root_pose, body_pose, shape_param, cam_param | |
class FaceRegressor(nn.Module): | |
def __init__(self, feat_dim=768): | |
super(FaceRegressor, self).__init__() | |
self.expr_out = make_linear_layers([feat_dim, smpl_x.expr_code_dim], relu_final=False) | |
self.jaw_pose_out = make_linear_layers([feat_dim, 6], relu_final=False) | |
def forward(self, expr_token, jaw_pose_token): | |
expr_param = self.expr_out(expr_token) # expression parameter | |
jaw_pose = self.jaw_pose_out(jaw_pose_token) # jaw pose parameter | |
return expr_param, jaw_pose | |
class BoxNet(nn.Module): | |
def __init__(self, feat_dim=768): | |
super(BoxNet, self).__init__() | |
self.joint_num = len(smpl_x.pos_joint_part['body']) | |
self.deconv = make_deconv_layers([feat_dim + self.joint_num * cfg.output_hm_shape[0], 256, 256, 256]) | |
self.bbox_center = make_conv_layers([256, 3], kernel=1, stride=1, padding=0, bnrelu_final=False) | |
self.lhand_size = make_linear_layers([256, 256, 2], relu_final=False) | |
self.rhand_size = make_linear_layers([256, 256, 2], relu_final=False) | |
self.face_size = make_linear_layers([256, 256, 2], relu_final=False) | |
def forward(self, img_feat, joint_hm): | |
joint_hm = joint_hm.view(joint_hm.shape[0], joint_hm.shape[1] * cfg.output_hm_shape[0], cfg.output_hm_shape[1], cfg.output_hm_shape[2]) | |
img_feat = torch.cat((img_feat, joint_hm), 1) | |
img_feat = self.deconv(img_feat) | |
# bbox center | |
bbox_center_hm = self.bbox_center(img_feat) | |
bbox_center = soft_argmax_2d(bbox_center_hm) | |
lhand_center, rhand_center, face_center = bbox_center[:, 0, :], bbox_center[:, 1, :], bbox_center[:, 2, :] | |
# bbox size | |
lhand_feat = sample_joint_features(img_feat, lhand_center[:, None, :].detach())[:, 0, :] | |
lhand_size = self.lhand_size(lhand_feat) | |
rhand_feat = sample_joint_features(img_feat, rhand_center[:, None, :].detach())[:, 0, :] | |
rhand_size = self.rhand_size(rhand_feat) | |
face_feat = sample_joint_features(img_feat, face_center[:, None, :].detach())[:, 0, :] | |
face_size = self.face_size(face_feat) | |
lhand_center = lhand_center / 8 | |
rhand_center = rhand_center / 8 | |
face_center = face_center / 8 | |
return lhand_center, lhand_size, rhand_center, rhand_size, face_center, face_size | |
class BoxSizeNet(nn.Module): | |
def __init__(self): | |
super(BoxSizeNet, self).__init__() | |
self.lhand_size = make_linear_layers([256, 256, 2], relu_final=False) | |
self.rhand_size = make_linear_layers([256, 256, 2], relu_final=False) | |
self.face_size = make_linear_layers([256, 256, 2], relu_final=False) | |
def forward(self, box_fea): | |
# box_fea: [bs, 3, C] | |
lhand_size = self.lhand_size(box_fea[:, 0]) | |
rhand_size = self.rhand_size(box_fea[:, 1]) | |
face_size = self.face_size(box_fea[:, 2]) | |
return lhand_size, rhand_size, face_size | |
class HandRoI(nn.Module): | |
def __init__(self, feat_dim=768, upscale=4): | |
super(HandRoI, self).__init__() | |
self.upscale = upscale | |
if upscale==1: | |
self.deconv = make_conv_layers([feat_dim, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False) | |
self.conv = make_conv_layers([feat_dim, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False) | |
elif upscale==2: | |
self.deconv = make_deconv_layers([feat_dim, feat_dim//2]) | |
self.conv = make_conv_layers([feat_dim//2, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False) | |
elif upscale==4: | |
self.deconv = make_deconv_layers([feat_dim, feat_dim//2, feat_dim//4]) | |
self.conv = make_conv_layers([feat_dim//4, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False) | |
elif upscale==8: | |
self.deconv = make_deconv_layers([feat_dim, feat_dim//2, feat_dim//4, feat_dim//8]) | |
self.conv = make_conv_layers([feat_dim//8, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False) | |
def forward(self, img_feat, lhand_bbox, rhand_bbox): | |
lhand_bbox = torch.cat((torch.arange(lhand_bbox.shape[0]).float().to(cfg.device)[:, None], lhand_bbox), | |
1) # batch_idx, xmin, ymin, xmax, ymax | |
rhand_bbox = torch.cat((torch.arange(rhand_bbox.shape[0]).float().to(cfg.device)[:, None], rhand_bbox), | |
1) # batch_idx, xmin, ymin, xmax, ymax | |
img_feat = self.deconv(img_feat) | |
lhand_bbox_roi = lhand_bbox.clone() | |
lhand_bbox_roi[:, 1] = lhand_bbox_roi[:, 1] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale | |
lhand_bbox_roi[:, 2] = lhand_bbox_roi[:, 2] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale | |
lhand_bbox_roi[:, 3] = lhand_bbox_roi[:, 3] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale | |
lhand_bbox_roi[:, 4] = lhand_bbox_roi[:, 4] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale | |
assert (cfg.output_hm_shape[1]*self.upscale, cfg.output_hm_shape[2]*self.upscale) == (img_feat.shape[2], img_feat.shape[3]) | |
lhand_img_feat = roi_align(img_feat, lhand_bbox_roi, (cfg.output_hand_hm_shape[1], cfg.output_hand_hm_shape[2]), 1.0, 0, 'avg', False) | |
lhand_img_feat = torch.flip(lhand_img_feat, [3]) # flip to the right hand | |
rhand_bbox_roi = rhand_bbox.clone() | |
rhand_bbox_roi[:, 1] = rhand_bbox_roi[:, 1] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale | |
rhand_bbox_roi[:, 2] = rhand_bbox_roi[:, 2] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale | |
rhand_bbox_roi[:, 3] = rhand_bbox_roi[:, 3] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale | |
rhand_bbox_roi[:, 4] = rhand_bbox_roi[:, 4] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale | |
rhand_img_feat = roi_align(img_feat, rhand_bbox_roi, (cfg.output_hand_hm_shape[1], cfg.output_hand_hm_shape[2]), 1.0, 0, 'avg', False) | |
hand_img_feat = torch.cat((lhand_img_feat, rhand_img_feat)) # [bs, c, cfg.output_hand_hm_shape[2]*scale, cfg.output_hand_hm_shape[1]*scale] | |
hand_img_feat = self.conv(hand_img_feat) | |
return hand_img_feat |