Spaces:
Runtime error
Runtime error
import numpy as np | |
import cv2 | |
import random | |
from config import cfg | |
import math | |
from utils.human_models import smpl_x, smpl | |
from utils.transforms import cam2pixel, transform_joint_to_other_db | |
from plyfile import PlyData, PlyElement | |
import torch | |
def load_img(path, order='RGB'): | |
img = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) | |
if not isinstance(img, np.ndarray): | |
raise IOError("Fail to read %s" % path) | |
if order == 'RGB': | |
img = img[:, :, ::-1].copy() | |
img = img.astype(np.float32) | |
return img | |
def get_bbox(joint_img, joint_valid, extend_ratio=1.2): | |
x_img, y_img = joint_img[:, 0], joint_img[:, 1] | |
x_img = x_img[joint_valid == 1]; | |
y_img = y_img[joint_valid == 1]; | |
xmin = min(x_img); | |
ymin = min(y_img); | |
xmax = max(x_img); | |
ymax = max(y_img); | |
x_center = (xmin + xmax) / 2.; | |
width = xmax - xmin; | |
xmin = x_center - 0.5 * width * extend_ratio | |
xmax = x_center + 0.5 * width * extend_ratio | |
y_center = (ymin + ymax) / 2.; | |
height = ymax - ymin; | |
ymin = y_center - 0.5 * height * extend_ratio | |
ymax = y_center + 0.5 * height * extend_ratio | |
bbox = np.array([xmin, ymin, xmax - xmin, ymax - ymin]).astype(np.float32) | |
return bbox | |
def sanitize_bbox(bbox, img_width, img_height): | |
x, y, w, h = bbox | |
x1 = np.max((0, x)) | |
y1 = np.max((0, y)) | |
x2 = np.min((img_width - 1, x1 + np.max((0, w - 1)))) | |
y2 = np.min((img_height - 1, y1 + np.max((0, h - 1)))) | |
if w * h > 0 and x2 > x1 and y2 > y1: | |
bbox = np.array([x1, y1, x2 - x1, y2 - y1]) | |
else: | |
bbox = None | |
return bbox | |
def process_bbox(bbox, img_width, img_height, ratio=1.25): | |
bbox = sanitize_bbox(bbox, img_width, img_height) | |
if bbox is None: | |
return bbox | |
# aspect ratio preserving bbox | |
w = bbox[2] | |
h = bbox[3] | |
c_x = bbox[0] + w / 2. | |
c_y = bbox[1] + h / 2. | |
aspect_ratio = cfg.input_img_shape[1] / cfg.input_img_shape[0] | |
if w > aspect_ratio * h: | |
h = w / aspect_ratio | |
elif w < aspect_ratio * h: | |
w = h * aspect_ratio | |
bbox[2] = w * ratio | |
bbox[3] = h * ratio | |
bbox[0] = c_x - bbox[2] / 2. | |
bbox[1] = c_y - bbox[3] / 2. | |
bbox = bbox.astype(np.float32) | |
return bbox | |
def get_aug_config(): | |
scale_factor = 0.25 | |
rot_factor = 30 | |
color_factor = 0.2 | |
scale = np.clip(np.random.randn(), -1.0, 1.0) * scale_factor + 1.0 | |
rot = np.clip(np.random.randn(), -2.0, | |
2.0) * rot_factor if random.random() <= 0.6 else 0 | |
c_up = 1.0 + color_factor | |
c_low = 1.0 - color_factor | |
color_scale = np.array([random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]) | |
do_flip = random.random() <= 0.5 | |
return scale, rot, color_scale, do_flip | |
def augmentation(img, bbox, data_split): | |
if getattr(cfg, 'no_aug', False): | |
scale, rot, color_scale, do_flip = 1.0, 0.0, np.array([1, 1, 1]), False | |
elif data_split == 'train': | |
scale, rot, color_scale, do_flip = get_aug_config() | |
else: | |
scale, rot, color_scale, do_flip = 1.0, 0.0, np.array([1, 1, 1]), False | |
img, trans, inv_trans = generate_patch_image(img, bbox, scale, rot, do_flip, cfg.input_img_shape) | |
img = np.clip(img * color_scale[None, None, :], 0, 255) | |
return img, trans, inv_trans, rot, do_flip | |
def generate_patch_image(cvimg, bbox, scale, rot, do_flip, out_shape): | |
img = cvimg.copy() | |
img_height, img_width, img_channels = img.shape | |
bb_c_x = float(bbox[0] + 0.5 * bbox[2]) | |
bb_c_y = float(bbox[1] + 0.5 * bbox[3]) | |
bb_width = float(bbox[2]) | |
bb_height = float(bbox[3]) | |
if do_flip: | |
img = img[:, ::-1, :] | |
bb_c_x = img_width - bb_c_x - 1 | |
trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot) | |
img_patch = cv2.warpAffine(img, trans, (int(out_shape[1]), int(out_shape[0])), flags=cv2.INTER_LINEAR) | |
img_patch = img_patch.astype(np.float32) | |
inv_trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot, | |
inv=True) | |
return img_patch, trans, inv_trans | |
def rotate_2d(pt_2d, rot_rad): | |
x = pt_2d[0] | |
y = pt_2d[1] | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
xx = x * cs - y * sn | |
yy = x * sn + y * cs | |
return np.array([xx, yy], dtype=np.float32) | |
def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False): | |
# augment size with scale | |
src_w = src_width * scale | |
src_h = src_height * scale | |
src_center = np.array([c_x, c_y], dtype=np.float32) | |
# augment rotation | |
rot_rad = np.pi * rot / 180 | |
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad) | |
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad) | |
dst_w = dst_width | |
dst_h = dst_height | |
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32) | |
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32) | |
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32) | |
src = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = src_center | |
src[1, :] = src_center + src_downdir | |
src[2, :] = src_center + src_rightdir | |
dst = np.zeros((3, 2), dtype=np.float32) | |
dst[0, :] = dst_center | |
dst[1, :] = dst_center + dst_downdir | |
dst[2, :] = dst_center + dst_rightdir | |
if inv: | |
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) | |
else: | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
trans = trans.astype(np.float32) | |
return trans | |
def process_db_coord(joint_img, joint_cam, joint_valid, do_flip, img_shape, flip_pairs, img2bb_trans, rot, | |
src_joints_name, target_joints_name): | |
joint_img_original = joint_img.copy() | |
joint_img, joint_cam, joint_valid = joint_img.copy(), joint_cam.copy(), joint_valid.copy() | |
# flip augmentation | |
if do_flip: | |
joint_cam[:, 0] = -joint_cam[:, 0] | |
joint_img[:, 0] = img_shape[1] - 1 - joint_img[:, 0] | |
for pair in flip_pairs: | |
joint_img[pair[0], :], joint_img[pair[1], :] = joint_img[pair[1], :].copy(), joint_img[pair[0], :].copy() | |
joint_cam[pair[0], :], joint_cam[pair[1], :] = joint_cam[pair[1], :].copy(), joint_cam[pair[0], :].copy() | |
joint_valid[pair[0], :], joint_valid[pair[1], :] = joint_valid[pair[1], :].copy(), joint_valid[pair[0], | |
:].copy() | |
# 3D data rotation augmentation | |
rot_aug_mat = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], | |
[0, 0, 1]], dtype=np.float32) | |
joint_cam = np.dot(rot_aug_mat, joint_cam.transpose(1, 0)).transpose(1, 0) | |
# affine transformation | |
joint_img_xy1 = np.concatenate((joint_img[:, :2], np.ones_like(joint_img[:, :1])), 1) | |
joint_img[:, :2] = np.dot(img2bb_trans, joint_img_xy1.transpose(1, 0)).transpose(1, 0) | |
joint_img[:, 0] = joint_img[:, 0] / cfg.input_img_shape[1] * cfg.output_hm_shape[2] | |
joint_img[:, 1] = joint_img[:, 1] / cfg.input_img_shape[0] * cfg.output_hm_shape[1] | |
# check truncation | |
joint_trunc = joint_valid * ((joint_img_original[:, 0] > 0) * (joint_img[:, 0] >= 0) * (joint_img[:, 0] < cfg.output_hm_shape[2]) * \ | |
(joint_img_original[:, 1] > 0) *(joint_img[:, 1] >= 0) * (joint_img[:, 1] < cfg.output_hm_shape[1]) * \ | |
(joint_img_original[:, 2] > 0) *(joint_img[:, 2] >= 0) * (joint_img[:, 2] < cfg.output_hm_shape[0])).reshape(-1, | |
1).astype( | |
np.float32) | |
# transform joints to target db joints | |
joint_img = transform_joint_to_other_db(joint_img, src_joints_name, target_joints_name) | |
joint_cam_wo_ra = transform_joint_to_other_db(joint_cam, src_joints_name, target_joints_name) | |
joint_valid = transform_joint_to_other_db(joint_valid, src_joints_name, target_joints_name) | |
joint_trunc = transform_joint_to_other_db(joint_trunc, src_joints_name, target_joints_name) | |
# root-alignment, for joint_cam input wo ra | |
joint_cam_ra = joint_cam_wo_ra.copy() | |
joint_cam_ra = joint_cam_ra - joint_cam_ra[smpl_x.root_joint_idx, None, :] # root-relative | |
joint_cam_ra[smpl_x.joint_part['lhand'], :] = joint_cam_ra[smpl_x.joint_part['lhand'], :] - joint_cam_ra[ | |
smpl_x.lwrist_idx, None, | |
:] # left hand root-relative | |
joint_cam_ra[smpl_x.joint_part['rhand'], :] = joint_cam_ra[smpl_x.joint_part['rhand'], :] - joint_cam_ra[ | |
smpl_x.rwrist_idx, None, | |
:] # right hand root-relative | |
joint_cam_ra[smpl_x.joint_part['face'], :] = joint_cam_ra[smpl_x.joint_part['face'], :] - joint_cam_ra[smpl_x.neck_idx, | |
None, | |
:] # face root-relative | |
return joint_img, joint_cam_wo_ra, joint_cam_ra, joint_valid, joint_trunc | |
def process_human_model_output(human_model_param, cam_param, do_flip, img_shape, img2bb_trans, rot, human_model_type, joint_img=None): | |
if human_model_type == 'smplx': | |
human_model = smpl_x | |
rotation_valid = np.ones((smpl_x.orig_joint_num), dtype=np.float32) | |
coord_valid = np.ones((smpl_x.joint_num), dtype=np.float32) | |
root_pose, body_pose, shape, trans = human_model_param['root_pose'], human_model_param['body_pose'], \ | |
human_model_param['shape'], human_model_param['trans'] | |
if 'lhand_pose' in human_model_param and human_model_param['lhand_valid']: | |
lhand_pose = human_model_param['lhand_pose'] | |
else: | |
lhand_pose = np.zeros((3 * len(smpl_x.orig_joint_part['lhand'])), dtype=np.float32) | |
rotation_valid[smpl_x.orig_joint_part['lhand']] = 0 | |
coord_valid[smpl_x.joint_part['lhand']] = 0 | |
if 'rhand_pose' in human_model_param and human_model_param['rhand_valid']: | |
rhand_pose = human_model_param['rhand_pose'] | |
else: | |
rhand_pose = np.zeros((3 * len(smpl_x.orig_joint_part['rhand'])), dtype=np.float32) | |
rotation_valid[smpl_x.orig_joint_part['rhand']] = 0 | |
coord_valid[smpl_x.joint_part['rhand']] = 0 | |
if 'jaw_pose' in human_model_param and 'expr' in human_model_param and human_model_param['face_valid']: | |
jaw_pose = human_model_param['jaw_pose'] | |
expr = human_model_param['expr'] | |
expr_valid = True | |
else: | |
jaw_pose = np.zeros((3), dtype=np.float32) | |
expr = np.zeros((smpl_x.expr_code_dim), dtype=np.float32) | |
rotation_valid[smpl_x.orig_joint_part['face']] = 0 | |
coord_valid[smpl_x.joint_part['face']] = 0 | |
expr_valid = False | |
if 'gender' in human_model_param: | |
gender = human_model_param['gender'] | |
else: | |
gender = 'neutral' | |
root_pose = torch.FloatTensor(root_pose).view(1, 3) # (1,3) | |
body_pose = torch.FloatTensor(body_pose).view(-1, 3) # (21,3) | |
lhand_pose = torch.FloatTensor(lhand_pose).view(-1, 3) # (15,3) | |
rhand_pose = torch.FloatTensor(rhand_pose).view(-1, 3) # (15,3) | |
jaw_pose = torch.FloatTensor(jaw_pose).view(-1, 3) # (1,3) | |
shape = torch.FloatTensor(shape).view(1, -1) # SMPLX shape parameter | |
expr = torch.FloatTensor(expr).view(1, -1) # SMPLX expression parameter | |
trans = torch.FloatTensor(trans).view(1, -1) # translation vector | |
# apply camera extrinsic (rotation) | |
# merge root pose and camera rotation | |
if 'R' in cam_param: | |
R = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3) | |
root_pose = root_pose.numpy() | |
root_pose, _ = cv2.Rodrigues(root_pose) | |
root_pose, _ = cv2.Rodrigues(np.dot(R, root_pose)) | |
root_pose = torch.from_numpy(root_pose).view(1, 3) | |
# get mesh and joint coordinates | |
zero_pose = torch.zeros((1, 3)).float() # eye poses | |
with torch.no_grad(): | |
output = smpl_x.layer[gender](betas=shape, body_pose=body_pose.view(1, -1), global_orient=root_pose, | |
transl=trans, left_hand_pose=lhand_pose.view(1, -1), | |
right_hand_pose=rhand_pose.view(1, -1), jaw_pose=jaw_pose.view(1, -1), | |
leye_pose=zero_pose, reye_pose=zero_pose, expression=expr) | |
mesh_cam = output.vertices[0].numpy() | |
joint_cam = output.joints[0].numpy()[smpl_x.joint_idx, :] | |
# apply camera exrinsic (translation) | |
# compenstate rotation (translation from origin to root joint was not cancled) | |
if 'R' in cam_param and 't' in cam_param: | |
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3), np.array(cam_param['t'], | |
dtype=np.float32).reshape(1, 3) | |
root_cam = joint_cam[smpl_x.root_joint_idx, None, :] | |
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t | |
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t | |
# concat root, body, two hands, and jaw pose | |
pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose)) | |
# joint coordinates | |
if 'focal' not in cam_param or 'princpt' not in cam_param: | |
assert joint_img is not None | |
else: | |
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt']) | |
joint_img_original = joint_img.copy() | |
joint_cam = joint_cam - joint_cam[smpl_x.root_joint_idx, None, :] # root-relative | |
joint_cam[smpl_x.joint_part['lhand'], :] = joint_cam[smpl_x.joint_part['lhand'], :] - joint_cam[ | |
smpl_x.lwrist_idx, None, | |
:] # left hand root-relative | |
joint_cam[smpl_x.joint_part['rhand'], :] = joint_cam[smpl_x.joint_part['rhand'], :] - joint_cam[ | |
smpl_x.rwrist_idx, None, | |
:] # right hand root-relative | |
joint_cam[smpl_x.joint_part['face'], :] = joint_cam[smpl_x.joint_part['face'], :] - joint_cam[smpl_x.neck_idx, | |
None, | |
:] # face root-relative | |
joint_img[smpl_x.joint_part['body'], 2] = (joint_cam[smpl_x.joint_part['body'], 2].copy() / ( | |
cfg.body_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # body depth discretize | |
joint_img[smpl_x.joint_part['lhand'], 2] = (joint_cam[smpl_x.joint_part['lhand'], 2].copy() / ( | |
cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # left hand depth discretize | |
joint_img[smpl_x.joint_part['rhand'], 2] = (joint_cam[smpl_x.joint_part['rhand'], 2].copy() / ( | |
cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # right hand depth discretize | |
joint_img[smpl_x.joint_part['face'], 2] = (joint_cam[smpl_x.joint_part['face'], 2].copy() / ( | |
cfg.face_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] # face depth discretize | |
elif human_model_type == 'smpl': | |
human_model = smpl | |
pose, shape, trans = human_model_param['pose'], human_model_param['shape'], human_model_param['trans'] | |
if 'gender' in human_model_param: | |
gender = human_model_param['gender'] | |
else: | |
gender = 'neutral' | |
pose = torch.FloatTensor(pose).view(-1, 3) | |
shape = torch.FloatTensor(shape).view(1, -1); | |
trans = torch.FloatTensor(trans).view(1, -1) # translation vector | |
# apply camera extrinsic (rotation) | |
# merge root pose and camera rotation | |
if 'R' in cam_param: | |
R = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3) | |
root_pose = pose[smpl.orig_root_joint_idx, :].numpy() | |
root_pose, _ = cv2.Rodrigues(root_pose) | |
root_pose, _ = cv2.Rodrigues(np.dot(R, root_pose)) | |
pose[smpl.orig_root_joint_idx] = torch.from_numpy(root_pose).view(3) | |
# get mesh and joint coordinates | |
root_pose = pose[smpl.orig_root_joint_idx].view(1, 3) | |
body_pose = torch.cat((pose[:smpl.orig_root_joint_idx, :], pose[smpl.orig_root_joint_idx + 1:, :])).view(1, -1) | |
with torch.no_grad(): | |
output = smpl.layer[gender](betas=shape, body_pose=body_pose, global_orient=root_pose, transl=trans) | |
mesh_cam = output.vertices[0].numpy() | |
joint_cam = np.dot(smpl.joint_regressor, mesh_cam) | |
# apply camera exrinsic (translation) | |
# compenstate rotation (translation from origin to root joint was not cancled) | |
if 'R' in cam_param and 't' in cam_param: | |
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3), np.array(cam_param['t'], | |
dtype=np.float32).reshape(1, 3) | |
root_cam = joint_cam[smpl.root_joint_idx, None, :] | |
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t | |
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t | |
# joint coordinates | |
if 'focal' not in cam_param or 'princpt' not in cam_param: | |
assert joint_img is not None | |
else: | |
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt']) | |
joint_img_original = joint_img.copy() | |
joint_cam = joint_cam - joint_cam[smpl.root_joint_idx, None, :] # body root-relative | |
joint_img[:, 2] = (joint_cam[:, 2].copy() / (cfg.body_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[ | |
0] # body depth discretize | |
elif human_model_type == 'mano': | |
human_model = mano | |
pose, shape, trans = human_model_param['pose'], human_model_param['shape'], human_model_param['trans'] | |
hand_type = human_model_param['hand_type'] | |
pose = torch.FloatTensor(pose).view(-1, 3) | |
shape = torch.FloatTensor(shape).view(1, -1); | |
trans = torch.FloatTensor(trans).view(1, -1) # translation vector | |
# apply camera extrinsic (rotation) | |
# merge root pose and camera rotation | |
if 'R' in cam_param: | |
R = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3) | |
root_pose = pose[mano.orig_root_joint_idx, :].numpy() | |
root_pose, _ = cv2.Rodrigues(root_pose) | |
root_pose, _ = cv2.Rodrigues(np.dot(R, root_pose)) | |
pose[mano.orig_root_joint_idx] = torch.from_numpy(root_pose).view(3) | |
# get mesh and joint coordinates | |
root_pose = pose[mano.orig_root_joint_idx].view(1, 3) | |
hand_pose = torch.cat((pose[:mano.orig_root_joint_idx, :], pose[mano.orig_root_joint_idx + 1:, :])).view(1, -1) | |
with torch.no_grad(): | |
output = mano.layer[hand_type](betas=shape, hand_pose=hand_pose, global_orient=root_pose, transl=trans) | |
mesh_cam = output.vertices[0].numpy() | |
joint_cam = np.dot(mano.joint_regressor, mesh_cam) | |
# apply camera exrinsic (translation) | |
# compenstate rotation (translation from origin to root joint was not cancled) | |
if 'R' in cam_param and 't' in cam_param: | |
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3), np.array(cam_param['t'], | |
dtype=np.float32).reshape(1, 3) | |
root_cam = joint_cam[mano.root_joint_idx, None, :] | |
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t | |
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t | |
# joint coordinates | |
if 'focal' not in cam_param or 'princpt' not in cam_param: | |
assert joint_img is not None | |
else: | |
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt']) | |
joint_cam = joint_cam - joint_cam[mano.root_joint_idx, None, :] # hand root-relative | |
joint_img[:, 2] = (joint_cam[:, 2].copy() / (cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[ | |
0] # hand depth discretize | |
mesh_cam_orig = mesh_cam.copy() # back-up the original one | |
## so far, data augmentations are not applied yet | |
## now, apply data augmentations | |
# image projection | |
if do_flip: | |
joint_cam[:, 0] = -joint_cam[:, 0] | |
joint_img[:, 0] = img_shape[1] - 1 - joint_img[:, 0] | |
for pair in human_model.flip_pairs: | |
joint_cam[pair[0], :], joint_cam[pair[1], :] = joint_cam[pair[1], :].copy(), joint_cam[pair[0], :].copy() | |
joint_img[pair[0], :], joint_img[pair[1], :] = joint_img[pair[1], :].copy(), joint_img[pair[0], :].copy() | |
if human_model_type == 'smplx': | |
coord_valid[pair[0]], coord_valid[pair[1]] = coord_valid[pair[1]].copy(), coord_valid[pair[0]].copy() | |
# x,y affine transform, root-relative depth | |
joint_img_xy1 = np.concatenate((joint_img[:, :2], np.ones_like(joint_img[:, 0:1])), 1) | |
joint_img[:, :2] = np.dot(img2bb_trans, joint_img_xy1.transpose(1, 0)).transpose(1, 0)[:, :2] | |
joint_img[:, 0] = joint_img[:, 0] / cfg.input_img_shape[1] * cfg.output_hm_shape[2] | |
joint_img[:, 1] = joint_img[:, 1] / cfg.input_img_shape[0] * cfg.output_hm_shape[1] | |
# check truncation | |
# TODO | |
joint_trunc = ((joint_img_original[:, 0] > 0) * (joint_img[:, 0] >= 0) * (joint_img[:, 0] < cfg.output_hm_shape[2]) * \ | |
(joint_img_original[:, 1] > 0) * (joint_img[:, 1] >= 0) * (joint_img[:, 1] < cfg.output_hm_shape[1]) * \ | |
(joint_img_original[:, 2] > 0) * (joint_img[:, 2] >= 0) * (joint_img[:, 2] < cfg.output_hm_shape[0])).reshape(-1, 1).astype( | |
np.float32) | |
# 3D data rotation augmentation | |
rot_aug_mat = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], | |
[0, 0, 1]], dtype=np.float32) | |
# coordinate | |
joint_cam = np.dot(rot_aug_mat, joint_cam.transpose(1, 0)).transpose(1, 0) | |
# parameters | |
# flip pose parameter (axis-angle) | |
if do_flip: | |
for pair in human_model.orig_flip_pairs: | |
pose[pair[0], :], pose[pair[1], :] = pose[pair[1], :].clone(), pose[pair[0], :].clone() | |
if human_model_type == 'smplx': | |
rotation_valid[pair[0]], rotation_valid[pair[1]] = rotation_valid[pair[1]].copy(), rotation_valid[ | |
pair[0]].copy() | |
pose[:, 1:3] *= -1 # multiply -1 to y and z axis of axis-angle | |
# rotate root pose | |
pose = pose.numpy() | |
root_pose = pose[human_model.orig_root_joint_idx, :] | |
root_pose, _ = cv2.Rodrigues(root_pose) | |
root_pose, _ = cv2.Rodrigues(np.dot(rot_aug_mat, root_pose)) | |
pose[human_model.orig_root_joint_idx] = root_pose.reshape(3) | |
# change to mean shape if beta is too far from it | |
shape[(shape.abs() > 3).any(dim=1)] = 0. | |
shape = shape.numpy().reshape(-1) | |
# return results | |
if human_model_type == 'smplx': | |
pose = pose.reshape(-1) | |
expr = expr.numpy().reshape(-1) | |
return joint_img, joint_cam, joint_trunc, pose, shape, expr, rotation_valid, coord_valid, expr_valid, mesh_cam_orig | |
elif human_model_type == 'smpl': | |
pose = pose.reshape(-1) | |
return joint_img, joint_cam, joint_trunc, pose, shape, mesh_cam_orig | |
elif human_model_type == 'mano': | |
pose = pose.reshape(-1) | |
return joint_img, joint_cam, joint_trunc, pose, shape, mesh_cam_orig | |
def get_fitting_error_3D(db_joint, db_joint_from_fit, joint_valid): | |
# mask coordinate | |
db_joint = db_joint[np.tile(joint_valid, (1, 3)) == 1].reshape(-1, 3) | |
db_joint_from_fit = db_joint_from_fit[np.tile(joint_valid, (1, 3)) == 1].reshape(-1, 3) | |
db_joint_from_fit = db_joint_from_fit - np.mean(db_joint_from_fit, 0)[None, :] + np.mean(db_joint, 0)[None, | |
:] # translation alignment | |
error = np.sqrt(np.sum((db_joint - db_joint_from_fit) ** 2, 1)).mean() | |
return error | |
def load_obj(file_name): | |
v = [] | |
obj_file = open(file_name) | |
for line in obj_file: | |
words = line.split(' ') | |
if words[0] == 'v': | |
x, y, z = float(words[1]), float(words[2]), float(words[3]) | |
v.append(np.array([x, y, z])) | |
return np.stack(v) | |
def load_ply(file_name): | |
plydata = PlyData.read(file_name) | |
x = plydata['vertex']['x'] | |
y = plydata['vertex']['y'] | |
z = plydata['vertex']['z'] | |
v = np.stack((x, y, z), 1) | |
return v | |
def resize_bbox(bbox, scale=1.2): | |
if isinstance(bbox, list): | |
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3] | |
else: | |
x1, y1, x2, y2 = bbox | |
x_center = (x1+x2)/2.0 | |
y_center = (y1+y2)/2.0 | |
x_size, y_size = x2-x1, y2-y1 | |
x1_resize = x_center-x_size/2.0*scale | |
x2_resize = x_center+x_size/2.0*scale | |
y1_resize = y_center - y_size / 2.0 * scale | |
y2_resize = y_center + y_size / 2.0 * scale | |
bbox[0], bbox[1], bbox[2], bbox[3] = x1_resize, y1_resize, x2_resize, y2_resize | |
return bbox |