Spaces:
Runtime error
Runtime error
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SkeletonConv(nn.Module): | |
def __init__(self, neighbour_list, in_channels, out_channels, kernel_size, joint_num, stride=1, padding=0, | |
bias=True, padding_mode='zeros', add_offset=False, in_offset_channel=0): | |
self.in_channels_per_joint = in_channels // joint_num | |
self.out_channels_per_joint = out_channels // joint_num | |
if in_channels % joint_num != 0 or out_channels % joint_num != 0: | |
raise Exception('BAD') | |
super(SkeletonConv, self).__init__() | |
if padding_mode == 'zeros': | |
padding_mode = 'constant' | |
if padding_mode == 'reflection': | |
padding_mode = 'reflect' | |
self.expanded_neighbour_list = [] | |
self.expanded_neighbour_list_offset = [] | |
self.neighbour_list = neighbour_list | |
self.add_offset = add_offset | |
self.joint_num = joint_num | |
self.stride = stride | |
self.dilation = 1 | |
self.groups = 1 | |
self.padding = padding | |
self.padding_mode = padding_mode | |
self._padding_repeated_twice = (padding, padding) | |
for neighbour in neighbour_list: | |
expanded = [] | |
for k in neighbour: | |
for i in range(self.in_channels_per_joint): | |
expanded.append(k * self.in_channels_per_joint + i) | |
self.expanded_neighbour_list.append(expanded) | |
if self.add_offset: | |
self.offset_enc = SkeletonLinear(neighbour_list, in_offset_channel * len(neighbour_list), out_channels) | |
for neighbour in neighbour_list: | |
expanded = [] | |
for k in neighbour: | |
for i in range(add_offset): | |
expanded.append(k * in_offset_channel + i) | |
self.expanded_neighbour_list_offset.append(expanded) | |
self.weight = torch.zeros(out_channels, in_channels, kernel_size) | |
if bias: | |
self.bias = torch.zeros(out_channels) | |
else: | |
self.register_parameter('bias', None) | |
self.mask = torch.zeros_like(self.weight) | |
for i, neighbour in enumerate(self.expanded_neighbour_list): | |
self.mask[self.out_channels_per_joint * i: self.out_channels_per_joint * (i + 1), neighbour, ...] = 1 | |
self.mask = nn.Parameter(self.mask, requires_grad=False) | |
self.description = 'SkeletonConv(in_channels_per_armature={}, out_channels_per_armature={}, kernel_size={}, ' \ | |
'joint_num={}, stride={}, padding={}, bias={})'.format( | |
in_channels // joint_num, out_channels // joint_num, kernel_size, joint_num, stride, padding, bias | |
) | |
self.reset_parameters() | |
def reset_parameters(self): | |
for i, neighbour in enumerate(self.expanded_neighbour_list): | |
""" Use temporary variable to avoid assign to copy of slice, which might lead to unexpected result """ | |
tmp = torch.zeros_like(self.weight[self.out_channels_per_joint * i: self.out_channels_per_joint * (i + 1), | |
neighbour, ...]) | |
nn.init.kaiming_uniform_(tmp, a=math.sqrt(5)) | |
self.weight[self.out_channels_per_joint * i: self.out_channels_per_joint * (i + 1), | |
neighbour, ...] = tmp | |
if self.bias is not None: | |
fan_in, _ = nn.init._calculate_fan_in_and_fan_out( | |
self.weight[self.out_channels_per_joint * i: self.out_channels_per_joint * (i + 1), neighbour, ...]) | |
bound = 1 / math.sqrt(fan_in) | |
tmp = torch.zeros_like( | |
self.bias[self.out_channels_per_joint * i: self.out_channels_per_joint * (i + 1)]) | |
nn.init.uniform_(tmp, -bound, bound) | |
self.bias[self.out_channels_per_joint * i: self.out_channels_per_joint * (i + 1)] = tmp | |
self.weight = nn.Parameter(self.weight) | |
if self.bias is not None: | |
self.bias = nn.Parameter(self.bias) | |
def set_offset(self, offset): | |
if not self.add_offset: | |
raise Exception('Wrong Combination of Parameters') | |
self.offset = offset.reshape(offset.shape[0], -1) | |
def forward(self, input): | |
# print('SkeletonConv') | |
weight_masked = self.weight * self.mask | |
#print(f'input: {input.size()}') | |
res = F.conv1d(F.pad(input, self._padding_repeated_twice, mode=self.padding_mode), | |
weight_masked, self.bias, self.stride, | |
0, self.dilation, self.groups) | |
if self.add_offset: | |
offset_res = self.offset_enc(self.offset) | |
offset_res = offset_res.reshape(offset_res.shape + (1, )) | |
res += offset_res / 100 | |
#print(f'res: {res.size()}') | |
return res | |
class SkeletonLinear(nn.Module): | |
def __init__(self, neighbour_list, in_channels, out_channels, extra_dim1=False): | |
super(SkeletonLinear, self).__init__() | |
self.neighbour_list = neighbour_list | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.in_channels_per_joint = in_channels // len(neighbour_list) | |
self.out_channels_per_joint = out_channels // len(neighbour_list) | |
self.extra_dim1 = extra_dim1 | |
self.expanded_neighbour_list = [] | |
for neighbour in neighbour_list: | |
expanded = [] | |
for k in neighbour: | |
for i in range(self.in_channels_per_joint): | |
expanded.append(k * self.in_channels_per_joint + i) | |
self.expanded_neighbour_list.append(expanded) | |
self.weight = torch.zeros(out_channels, in_channels) | |
self.mask = torch.zeros(out_channels, in_channels) | |
self.bias = nn.Parameter(torch.Tensor(out_channels)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
for i, neighbour in enumerate(self.expanded_neighbour_list): | |
tmp = torch.zeros_like( | |
self.weight[i*self.out_channels_per_joint: (i + 1)*self.out_channels_per_joint, neighbour] | |
) | |
self.mask[i*self.out_channels_per_joint: (i + 1)*self.out_channels_per_joint, neighbour] = 1 | |
nn.init.kaiming_uniform_(tmp, a=math.sqrt(5)) | |
self.weight[i*self.out_channels_per_joint: (i + 1)*self.out_channels_per_joint, neighbour] = tmp | |
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) | |
bound = 1 / math.sqrt(fan_in) | |
nn.init.uniform_(self.bias, -bound, bound) | |
self.weight = nn.Parameter(self.weight) | |
self.mask = nn.Parameter(self.mask, requires_grad=False) | |
def forward(self, input): | |
input = input.reshape(input.shape[0], -1) | |
weight_masked = self.weight * self.mask | |
res = F.linear(input, weight_masked, self.bias) | |
if self.extra_dim1: | |
res = res.reshape(res.shape + (1,)) | |
return res | |
class SkeletonPool(nn.Module): | |
def __init__(self, edges, pooling_mode, channels_per_edge, last_pool=False): | |
super(SkeletonPool, self).__init__() | |
if pooling_mode != 'mean': | |
raise Exception('Unimplemented pooling mode in matrix_implementation') | |
self.channels_per_edge = channels_per_edge | |
self.pooling_mode = pooling_mode | |
self.edge_num = len(edges) | |
# self.edge_num = len(edges) + 1 | |
self.seq_list = [] | |
self.pooling_list = [] | |
self.new_edges = [] | |
degree = [0] * 100 # each element represents the degree of the corresponding joint | |
for edge in edges: | |
degree[edge[0]] += 1 | |
degree[edge[1]] += 1 | |
# seq_list contains multiple sub-lists where each sub-list is an edge chain from the joint whose degree > 2 to the end effectors or joints whose degree > 2. | |
def find_seq(j, seq): | |
nonlocal self, degree, edges | |
if degree[j] > 2 and j != 0: | |
self.seq_list.append(seq) | |
seq = [] | |
if degree[j] == 1: | |
self.seq_list.append(seq) | |
return | |
for idx, edge in enumerate(edges): | |
if edge[0] == j: | |
find_seq(edge[1], seq + [idx]) | |
find_seq(0, []) | |
# print(f'self.seq_list: {self.seq_list}') | |
for seq in self.seq_list: | |
if last_pool: | |
self.pooling_list.append(seq) | |
continue | |
if len(seq) % 2 == 1: | |
self.pooling_list.append([seq[0]]) | |
self.new_edges.append(edges[seq[0]]) | |
seq = seq[1:] | |
for i in range(0, len(seq), 2): | |
self.pooling_list.append([seq[i], seq[i + 1]]) | |
self.new_edges.append([edges[seq[i]][0], edges[seq[i + 1]][1]]) | |
# print(f'self.pooling_list: {self.pooling_list}') | |
# print(f'self.new_egdes: {self.new_edges}') | |
# add global position | |
# self.pooling_list.append([self.edge_num - 1]) | |
self.description = 'SkeletonPool(in_edge_num={}, out_edge_num={})'.format( | |
len(edges), len(self.pooling_list) | |
) | |
self.weight = torch.zeros(len(self.pooling_list) * channels_per_edge, self.edge_num * channels_per_edge) | |
for i, pair in enumerate(self.pooling_list): | |
for j in pair: | |
for c in range(channels_per_edge): | |
self.weight[i * channels_per_edge + c, j * channels_per_edge + c] = 1.0 / len(pair) | |
self.weight = nn.Parameter(self.weight, requires_grad=False) | |
def forward(self, input: torch.Tensor): | |
# print('SkeletonPool') | |
# print(f'input: {input.size()}') | |
# print(f'self.weight: {self.weight.size()}') | |
return torch.matmul(self.weight, input) | |
class SkeletonUnpool(nn.Module): | |
def __init__(self, pooling_list, channels_per_edge): | |
super(SkeletonUnpool, self).__init__() | |
self.pooling_list = pooling_list | |
self.input_edge_num = len(pooling_list) | |
self.output_edge_num = 0 | |
self.channels_per_edge = channels_per_edge | |
for t in self.pooling_list: | |
self.output_edge_num += len(t) | |
self.description = 'SkeletonUnpool(in_edge_num={}, out_edge_num={})'.format( | |
self.input_edge_num, self.output_edge_num, | |
) | |
self.weight = torch.zeros(self.output_edge_num * channels_per_edge, self.input_edge_num * channels_per_edge) | |
for i, pair in enumerate(self.pooling_list): | |
for j in pair: | |
for c in range(channels_per_edge): | |
self.weight[j * channels_per_edge + c, i * channels_per_edge + c] = 1 | |
self.weight = nn.Parameter(self.weight) | |
self.weight.requires_grad_(False) | |
def forward(self, input: torch.Tensor): | |
# print('SkeletonUnpool') | |
# print(f'input: {input.size()}') | |
# print(f'self.weight: {self.weight.size()}') | |
return torch.matmul(self.weight, input) | |
""" | |
Helper functions for skeleton operation | |
""" | |
def dfs(x, fa, vis, dist): | |
vis[x] = 1 | |
for y in range(len(fa)): | |
if (fa[y] == x or fa[x] == y) and vis[y] == 0: | |
dist[y] = dist[x] + 1 | |
dfs(y, fa, vis, dist) | |
""" | |
def find_neighbor_joint(fa, threshold): | |
neighbor_list = [[]] | |
for x in range(1, len(fa)): | |
vis = [0 for _ in range(len(fa))] | |
dist = [0 for _ in range(len(fa))] | |
dist[0] = 10000 | |
dfs(x, fa, vis, dist) | |
neighbor = [] | |
for j in range(1, len(fa)): | |
if dist[j] <= threshold: | |
neighbor.append(j) | |
neighbor_list.append(neighbor) | |
neighbor = [0] | |
for i, x in enumerate(neighbor_list): | |
if i == 0: continue | |
if 1 in x: | |
neighbor.append(i) | |
neighbor_list[i] = [0] + neighbor_list[i] | |
neighbor_list[0] = neighbor | |
return neighbor_list | |
def build_edge_topology(topology, offset): | |
# get all edges (pa, child, offset) | |
edges = [] | |
joint_num = len(topology) | |
for i in range(1, joint_num): | |
edges.append((topology[i], i, offset[i])) | |
return edges | |
""" | |
def build_edge_topology(topology): | |
# get all edges (pa, child) | |
edges = [] | |
joint_num = len(topology) | |
edges.append((0, joint_num)) # add an edge between the root joint and a virtual joint | |
for i in range(1, joint_num): | |
edges.append((topology[i], i)) | |
return edges | |
def build_joint_topology(edges, origin_names): | |
parent = [] | |
offset = [] | |
names = [] | |
edge2joint = [] | |
joint_from_edge = [] # -1 means virtual joint | |
joint_cnt = 0 | |
out_degree = [0] * (len(edges) + 10) | |
for edge in edges: | |
out_degree[edge[0]] += 1 | |
# add root joint | |
joint_from_edge.append(-1) | |
parent.append(0) | |
offset.append(np.array([0, 0, 0])) | |
names.append(origin_names[0]) | |
joint_cnt += 1 | |
def make_topology(edge_idx, pa): | |
nonlocal edges, parent, offset, names, edge2joint, joint_from_edge, joint_cnt | |
edge = edges[edge_idx] | |
if out_degree[edge[0]] > 1: | |
parent.append(pa) | |
offset.append(np.array([0, 0, 0])) | |
names.append(origin_names[edge[1]] + '_virtual') | |
edge2joint.append(-1) | |
pa = joint_cnt | |
joint_cnt += 1 | |
parent.append(pa) | |
offset.append(edge[2]) | |
names.append(origin_names[edge[1]]) | |
edge2joint.append(edge_idx) | |
pa = joint_cnt | |
joint_cnt += 1 | |
for idx, e in enumerate(edges): | |
if e[0] == edge[1]: | |
make_topology(idx, pa) | |
for idx, e in enumerate(edges): | |
if e[0] == 0: | |
make_topology(idx, 0) | |
return parent, offset, names, edge2joint | |
def calc_edge_mat(edges): | |
edge_num = len(edges) | |
# edge_mat[i][j] = distance between edge(i) and edge(j) | |
edge_mat = [[100000] * edge_num for _ in range(edge_num)] | |
for i in range(edge_num): | |
edge_mat[i][i] = 0 | |
# initialize edge_mat with direct neighbor | |
for i, a in enumerate(edges): | |
for j, b in enumerate(edges): | |
link = 0 | |
for x in range(2): | |
for y in range(2): | |
if a[x] == b[y]: | |
link = 1 | |
if link: | |
edge_mat[i][j] = 1 | |
# calculate all the pairs distance | |
for k in range(edge_num): | |
for i in range(edge_num): | |
for j in range(edge_num): | |
edge_mat[i][j] = min(edge_mat[i][j], edge_mat[i][k] + edge_mat[k][j]) | |
return edge_mat | |
def find_neighbor(edges, d): | |
""" | |
Args: | |
edges: The list contains N elements, each element represents (parent, child). | |
d: Distance between edges (the distance of the same edge is 0 and the distance of adjacent edges is 1). | |
Returns: | |
The list contains N elements, each element is a list of edge indices whose distance <= d. | |
""" | |
edge_mat = calc_edge_mat(edges) | |
neighbor_list = [] | |
edge_num = len(edge_mat) | |
for i in range(edge_num): | |
neighbor = [] | |
for j in range(edge_num): | |
if edge_mat[i][j] <= d: | |
neighbor.append(j) | |
neighbor_list.append(neighbor) | |
# # add neighbor for global part | |
# global_part_neighbor = neighbor_list[0].copy() | |
# """ | |
# Line #373 is buggy. Thanks @crissallan!! | |
# See issue #30 (https://github.com/DeepMotionEditing/deep-motion-editing/issues/30) | |
# However, fixing this bug will make it unable to load the pretrained model and | |
# affect the reproducibility of quantitative error reported in the paper. | |
# It is not a fatal bug so we didn't touch it and we are looking for possible solutions. | |
# """ | |
# for i in global_part_neighbor: | |
# neighbor_list[i].append(edge_num) | |
# neighbor_list.append(global_part_neighbor) | |
return neighbor_list | |
def calc_node_depth(topology): | |
def dfs(node, topology): | |
if topology[node] < 0: | |
return 0 | |
return 1 + dfs(topology[node], topology) | |
depth = [] | |
for i in range(len(topology)): | |
depth.append(dfs(i, topology)) | |
return depth | |
def residual_ratio(k): | |
return 1 / (k + 1) | |
class Affine(nn.Module): | |
def __init__(self, num_parameters, scale=True, bias=True, scale_init=1.0): | |
super(Affine, self).__init__() | |
if scale: | |
self.scale = nn.Parameter(torch.ones(num_parameters) * scale_init) | |
else: | |
self.register_parameter('scale', None) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(num_parameters)) | |
else: | |
self.register_parameter('bias', None) | |
def forward(self, input): | |
output = input | |
if self.scale is not None: | |
scale = self.scale.unsqueeze(0) | |
while scale.dim() < input.dim(): | |
scale = scale.unsqueeze(2) | |
output = output.mul(scale) | |
if self.bias is not None: | |
bias = self.bias.unsqueeze(0) | |
while bias.dim() < input.dim(): | |
bias = bias.unsqueeze(2) | |
output += bias | |
return output | |
class BatchStatistics(nn.Module): | |
def __init__(self, affine=-1): | |
super(BatchStatistics, self).__init__() | |
self.affine = nn.Sequential() if affine == -1 else Affine(affine) | |
self.loss = 0 | |
def clear_loss(self): | |
self.loss = 0 | |
def compute_loss(self, input): | |
input_flat = input.view(input.size(1), input.numel() // input.size(1)) | |
mu = input_flat.mean(1) | |
logvar = (input_flat.pow(2).mean(1) - mu.pow(2)).sqrt().log() | |
self.loss = mu.pow(2).mean() + logvar.pow(2).mean() | |
def forward(self, input): | |
self.compute_loss(input) | |
return self.affine(input) | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, residual_ratio, activation, batch_statistics=False, last_layer=False): | |
super(ResidualBlock, self).__init__() | |
self.residual_ratio = residual_ratio | |
self.shortcut_ratio = 1 - residual_ratio | |
residual = [] | |
residual.append(nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding)) | |
if batch_statistics: | |
residual.append(BatchStatistics(out_channels)) | |
if not last_layer: | |
residual.append(nn.PReLU() if activation == 'relu' else nn.Tanh()) | |
self.residual = nn.Sequential(*residual) | |
self.shortcut = nn.Sequential( | |
nn.AvgPool1d(kernel_size=2) if stride == 2 else nn.Sequential(), | |
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1, padding=0), | |
BatchStatistics(out_channels) if (in_channels != out_channels and batch_statistics is True) else nn.Sequential() | |
) | |
def forward(self, input): | |
return self.residual(input).mul(self.residual_ratio) + self.shortcut(input).mul(self.shortcut_ratio) | |
class ResidualBlockTranspose(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, residual_ratio, activation): | |
super(ResidualBlockTranspose, self).__init__() | |
self.residual_ratio = residual_ratio | |
self.shortcut_ratio = 1 - residual_ratio | |
self.residual = nn.Sequential( | |
nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, padding), | |
nn.PReLU() if activation == 'relu' else nn.Tanh() | |
) | |
self.shortcut = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='linear', align_corners=False) if stride == 2 else nn.Sequential(), | |
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
) | |
def forward(self, input): | |
return self.residual(input).mul(self.residual_ratio) + self.shortcut(input).mul(self.shortcut_ratio) | |
class SkeletonResidual(nn.Module): | |
def __init__(self, topology, neighbour_list, joint_num, in_channels, out_channels, kernel_size, stride, padding, padding_mode, bias, extra_conv, pooling_mode, activation, last_pool): | |
super(SkeletonResidual, self).__init__() | |
kernel_even = False if kernel_size % 2 else True | |
seq = [] | |
for _ in range(extra_conv): | |
# (T, J, D) => (T, J, D) | |
seq.append(SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=in_channels, | |
joint_num=joint_num, kernel_size=kernel_size - 1 if kernel_even else kernel_size, | |
stride=1, | |
padding=padding, padding_mode=padding_mode, bias=bias)) | |
seq.append(nn.PReLU() if activation == 'relu' else nn.Tanh()) | |
# (T, J, D) => (T/2, J, 2D) | |
seq.append(SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=out_channels, | |
joint_num=joint_num, kernel_size=kernel_size, stride=stride, | |
padding=padding, padding_mode=padding_mode, bias=bias, add_offset=False)) | |
seq.append(nn.GroupNorm(10, out_channels)) # FIXME: REMEMBER TO CHANGE BACK !!! | |
self.residual = nn.Sequential(*seq) | |
# (T, J, D) => (T/2, J, 2D) | |
self.shortcut = SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=out_channels, | |
joint_num=joint_num, kernel_size=1, stride=stride, padding=0, | |
bias=True, add_offset=False) | |
seq = [] | |
# (T/2, J, 2D) => (T/2, J', 2D) | |
pool = SkeletonPool(edges=topology, pooling_mode=pooling_mode, | |
channels_per_edge=out_channels // len(neighbour_list), last_pool=last_pool) | |
if len(pool.pooling_list) != pool.edge_num: | |
seq.append(pool) | |
seq.append(nn.PReLU() if activation == 'relu' else nn.Tanh()) | |
self.common = nn.Sequential(*seq) | |
def forward(self, input): | |
output = self.residual(input) + self.shortcut(input) | |
return self.common(output) | |
class SkeletonResidualTranspose(nn.Module): | |
def __init__(self, neighbour_list, joint_num, in_channels, out_channels, kernel_size, padding, padding_mode, bias, extra_conv, pooling_list, upsampling, activation, last_layer): | |
super(SkeletonResidualTranspose, self).__init__() | |
kernel_even = False if kernel_size % 2 else True | |
seq = [] | |
# (T, J, D) => (2T, J, D) | |
if upsampling is not None: | |
seq.append(nn.Upsample(scale_factor=2, mode=upsampling, align_corners=False)) | |
# (2T, J, D) => (2T, J', D) | |
unpool = SkeletonUnpool(pooling_list, in_channels // len(neighbour_list)) | |
if unpool.input_edge_num != unpool.output_edge_num: | |
seq.append(unpool) | |
self.common = nn.Sequential(*seq) | |
seq = [] | |
for _ in range(extra_conv): | |
# (2T, J', D) => (2T, J', D) | |
seq.append(SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=in_channels, | |
joint_num=joint_num, kernel_size=kernel_size - 1 if kernel_even else kernel_size, | |
stride=1, | |
padding=padding, padding_mode=padding_mode, bias=bias)) | |
seq.append(nn.PReLU() if activation == 'relu' else nn.Tanh()) | |
# (2T, J', D) => (2T, J', D/2) | |
seq.append(SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=out_channels, | |
joint_num=joint_num, kernel_size=kernel_size - 1 if kernel_even else kernel_size, | |
stride=1, | |
padding=padding, padding_mode=padding_mode, bias=bias, add_offset=False)) | |
self.residual = nn.Sequential(*seq) | |
# (2T, J', D) => (2T, J', D/2) | |
self.shortcut = SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=out_channels, | |
joint_num=joint_num, kernel_size=1, stride=1, padding=0, | |
bias=True, add_offset=False) | |
if activation == 'relu': | |
self.activation = nn.PReLU() if not last_layer else None | |
else: | |
self.activation = nn.Tanh() if not last_layer else None | |
def forward(self, input): | |
output = self.common(input) | |
output = self.residual(output) + self.shortcut(output) | |
if self.activation is not None: | |
return self.activation(output) | |
else: | |
return output |