Spaces:
Runtime error
Runtime error
Update SMPLer-X/app.py
Browse files- SMPLer-X/app.py +134 -134
SMPLer-X/app.py
CHANGED
@@ -1,135 +1,135 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import argparse
|
4 |
-
import sys
|
5 |
-
import re
|
6 |
-
import json
|
7 |
-
import numpy as np
|
8 |
-
import os.path as osp
|
9 |
-
from pathlib import Path
|
10 |
-
import cv2
|
11 |
-
import torch
|
12 |
-
import math
|
13 |
-
from tqdm import tqdm
|
14 |
-
from huggingface_hub import hf_hub_download
|
15 |
-
try:
|
16 |
-
import mmpose
|
17 |
-
except:
|
18 |
-
os.system('pip install ./main/transformer_utils')
|
19 |
-
# hf_hub_download(repo_id="caizhongang/SMPLer-X", filename="smpler_x_h32.pth.tar", local_dir="/home/user/app/pretrained_models")
|
20 |
-
# /home/user/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torchgeometry/core/conversions.py
|
21 |
-
|
22 |
-
|
23 |
-
def extract_frame_number(file_name):
|
24 |
-
match = re.search(r'(\d{5})', file_name)
|
25 |
-
if match:
|
26 |
-
return int(match.group(1))
|
27 |
-
return None
|
28 |
-
|
29 |
-
def merge_npz_files(npz_files, output_file):
|
30 |
-
npz_files = sorted(npz_files, key=lambda x: extract_frame_number(os.path.basename(x)))
|
31 |
-
merged_data = {}
|
32 |
-
for file in npz_files:
|
33 |
-
data = np.load(file)
|
34 |
-
for key in data.files:
|
35 |
-
if key not in merged_data:
|
36 |
-
merged_data[key] = []
|
37 |
-
merged_data[key].append(data[key])
|
38 |
-
for key in merged_data:
|
39 |
-
merged_data[key] = np.stack(merged_data[key], axis=0)
|
40 |
-
np.savez(output_file, **merged_data)
|
41 |
-
|
42 |
-
def npz_to_npz(pkl_path, npz_path):
|
43 |
-
# Load the pickle file
|
44 |
-
pkl_example = np.load(pkl_path, allow_pickle=True)
|
45 |
-
n = pkl_example["expression"].shape[0] # Assuming this is the batch size
|
46 |
-
full_pose = np.concatenate([pkl_example["global_orient"], pkl_example["body_pose"], pkl_example["jaw_pose"], pkl_example["leye_pose"], pkl_example["reye_pose"], pkl_example["left_hand_pose"], pkl_example["right_hand_pose"]], axis=1)
|
47 |
-
# print(full_pose.shape)
|
48 |
-
np.savez(npz_path,
|
49 |
-
betas=np.zeros(300),
|
50 |
-
poses=full_pose.reshape(n, -1),
|
51 |
-
expressions=np.zeros((n, 100)),
|
52 |
-
trans=pkl_example["transl"].reshape(n, -1),
|
53 |
-
model='smplx2020',
|
54 |
-
gender='neutral',
|
55 |
-
mocap_frame_rate=30,
|
56 |
-
)
|
57 |
-
|
58 |
-
def get_json(root_dir, output_dir):
|
59 |
-
clips = []
|
60 |
-
dirs = os.listdir(root_dir)
|
61 |
-
all_length = 0
|
62 |
-
for dir in dirs:
|
63 |
-
if not dir.endswith(".mp4"): continue
|
64 |
-
video_id = dir[:-4]
|
65 |
-
root = root_dir
|
66 |
-
try:
|
67 |
-
length = np.load(os.path.join(root, video_id+".npz"), allow_pickle=True)["poses"].shape[0]
|
68 |
-
all_length += length
|
69 |
-
except:
|
70 |
-
print("cant open ", dir)
|
71 |
-
continue
|
72 |
-
clip = {
|
73 |
-
"video_id": video_id,
|
74 |
-
"video_path": root[1:],
|
75 |
-
# "audio_path": root,
|
76 |
-
"motion_path": root[1:],
|
77 |
-
"mode": "test",
|
78 |
-
"start_idx": 0,
|
79 |
-
"end_idx": length
|
80 |
-
}
|
81 |
-
clips.append(clip)
|
82 |
-
if all_length < 1:
|
83 |
-
print(f"skip due to total frames is less than 1500 for {root_dir}")
|
84 |
-
return 0
|
85 |
-
else:
|
86 |
-
with open(output_dir, 'w') as f:
|
87 |
-
json.dump(clips, f, indent=4)
|
88 |
-
return all_length
|
89 |
-
|
90 |
-
|
91 |
-
def infer(video_input, in_threshold, num_people, render_mesh, inferer, OUT_FOLDER):
|
92 |
-
os.system(f'rm -rf {OUT_FOLDER}/smplx/*')
|
93 |
-
multi_person = num_people
|
94 |
-
cap = cv2.VideoCapture(video_input)
|
95 |
-
video_name = video_input.split("/")[-1]
|
96 |
-
success = 1
|
97 |
-
frame = 0
|
98 |
-
while success:
|
99 |
-
success, original_img = cap.read()
|
100 |
-
if not success:
|
101 |
-
break
|
102 |
-
frame += 1
|
103 |
-
_, _, _ = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
|
104 |
-
cap.release()
|
105 |
-
npz_files = [os.path.join(OUT_FOLDER, 'smplx', x) for x in os.listdir(os.path.join(OUT_FOLDER, 'smplx'))]
|
106 |
-
|
107 |
-
merge_npz_files(npz_files, os.path.join(OUT_FOLDER, video_name.replace(".mp4", ".npz")))
|
108 |
-
os.system(f'rm -r {OUT_FOLDER}/smplx')
|
109 |
-
npz_to_npz(os.path.join(OUT_FOLDER, video_name.replace(".mp4", ".npz")), os.path.join(OUT_FOLDER, video_name.replace(".mp4", ".npz")))
|
110 |
-
source = video_input
|
111 |
-
destination = os.path.join(OUT_FOLDER, video_name.replace('.mp4', '.npz')).replace('.npz', '.mp4')
|
112 |
-
shutil.copy(source, destination)
|
113 |
-
|
114 |
-
if __name__ == "__main__":
|
115 |
-
parser = argparse.ArgumentParser()
|
116 |
-
parser.add_argument("--video_folder_path", type=str, default="")
|
117 |
-
parser.add_argument("--data_save_path", type=str, default="")
|
118 |
-
parser.add_argument("--json_save_path", type=str, default="")
|
119 |
-
args = parser.parse_args()
|
120 |
-
video_folder = args.video_folder_path
|
121 |
-
|
122 |
-
DEFAULT_MODEL='smpler_x_s32'
|
123 |
-
OUT_FOLDER = args.data_save_path
|
124 |
-
os.makedirs(OUT_FOLDER, exist_ok=True)
|
125 |
-
num_gpus = 1 if torch.cuda.is_available() else -1
|
126 |
-
index = torch.cuda.current_device()
|
127 |
-
from main.inference import Inferer
|
128 |
-
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
129 |
-
|
130 |
-
for video_input in tqdm(os.listdir(video_folder)):
|
131 |
-
if not video_input.endswith(".mp4"):
|
132 |
-
continue
|
133 |
-
infer(os.path.join(video_folder, video_input), 0.5, False, False, inferer, OUT_FOLDER)
|
134 |
-
get_json(OUT_FOLDER, args.json_save_path)
|
135 |
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import argparse
|
4 |
+
import sys
|
5 |
+
import re
|
6 |
+
import json
|
7 |
+
import numpy as np
|
8 |
+
import os.path as osp
|
9 |
+
from pathlib import Path
|
10 |
+
import cv2
|
11 |
+
import torch
|
12 |
+
import math
|
13 |
+
from tqdm import tqdm
|
14 |
+
from huggingface_hub import hf_hub_download
|
15 |
+
try:
|
16 |
+
import mmpose
|
17 |
+
except:
|
18 |
+
os.system('pip install ./main/transformer_utils')
|
19 |
+
# hf_hub_download(repo_id="caizhongang/SMPLer-X", filename="smpler_x_h32.pth.tar", local_dir="/home/user/app/pretrained_models")
|
20 |
+
# /home/user/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torchgeometry/core/conversions.py
|
21 |
+
os.system('cp -rf ./assets/conversions.py /home/user/.pyenv/versions/3.9.20/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
|
22 |
+
|
23 |
+
def extract_frame_number(file_name):
|
24 |
+
match = re.search(r'(\d{5})', file_name)
|
25 |
+
if match:
|
26 |
+
return int(match.group(1))
|
27 |
+
return None
|
28 |
+
|
29 |
+
def merge_npz_files(npz_files, output_file):
|
30 |
+
npz_files = sorted(npz_files, key=lambda x: extract_frame_number(os.path.basename(x)))
|
31 |
+
merged_data = {}
|
32 |
+
for file in npz_files:
|
33 |
+
data = np.load(file)
|
34 |
+
for key in data.files:
|
35 |
+
if key not in merged_data:
|
36 |
+
merged_data[key] = []
|
37 |
+
merged_data[key].append(data[key])
|
38 |
+
for key in merged_data:
|
39 |
+
merged_data[key] = np.stack(merged_data[key], axis=0)
|
40 |
+
np.savez(output_file, **merged_data)
|
41 |
+
|
42 |
+
def npz_to_npz(pkl_path, npz_path):
|
43 |
+
# Load the pickle file
|
44 |
+
pkl_example = np.load(pkl_path, allow_pickle=True)
|
45 |
+
n = pkl_example["expression"].shape[0] # Assuming this is the batch size
|
46 |
+
full_pose = np.concatenate([pkl_example["global_orient"], pkl_example["body_pose"], pkl_example["jaw_pose"], pkl_example["leye_pose"], pkl_example["reye_pose"], pkl_example["left_hand_pose"], pkl_example["right_hand_pose"]], axis=1)
|
47 |
+
# print(full_pose.shape)
|
48 |
+
np.savez(npz_path,
|
49 |
+
betas=np.zeros(300),
|
50 |
+
poses=full_pose.reshape(n, -1),
|
51 |
+
expressions=np.zeros((n, 100)),
|
52 |
+
trans=pkl_example["transl"].reshape(n, -1),
|
53 |
+
model='smplx2020',
|
54 |
+
gender='neutral',
|
55 |
+
mocap_frame_rate=30,
|
56 |
+
)
|
57 |
+
|
58 |
+
def get_json(root_dir, output_dir):
|
59 |
+
clips = []
|
60 |
+
dirs = os.listdir(root_dir)
|
61 |
+
all_length = 0
|
62 |
+
for dir in dirs:
|
63 |
+
if not dir.endswith(".mp4"): continue
|
64 |
+
video_id = dir[:-4]
|
65 |
+
root = root_dir
|
66 |
+
try:
|
67 |
+
length = np.load(os.path.join(root, video_id+".npz"), allow_pickle=True)["poses"].shape[0]
|
68 |
+
all_length += length
|
69 |
+
except:
|
70 |
+
print("cant open ", dir)
|
71 |
+
continue
|
72 |
+
clip = {
|
73 |
+
"video_id": video_id,
|
74 |
+
"video_path": root[1:],
|
75 |
+
# "audio_path": root,
|
76 |
+
"motion_path": root[1:],
|
77 |
+
"mode": "test",
|
78 |
+
"start_idx": 0,
|
79 |
+
"end_idx": length
|
80 |
+
}
|
81 |
+
clips.append(clip)
|
82 |
+
if all_length < 1:
|
83 |
+
print(f"skip due to total frames is less than 1500 for {root_dir}")
|
84 |
+
return 0
|
85 |
+
else:
|
86 |
+
with open(output_dir, 'w') as f:
|
87 |
+
json.dump(clips, f, indent=4)
|
88 |
+
return all_length
|
89 |
+
|
90 |
+
|
91 |
+
def infer(video_input, in_threshold, num_people, render_mesh, inferer, OUT_FOLDER):
|
92 |
+
os.system(f'rm -rf {OUT_FOLDER}/smplx/*')
|
93 |
+
multi_person = num_people
|
94 |
+
cap = cv2.VideoCapture(video_input)
|
95 |
+
video_name = video_input.split("/")[-1]
|
96 |
+
success = 1
|
97 |
+
frame = 0
|
98 |
+
while success:
|
99 |
+
success, original_img = cap.read()
|
100 |
+
if not success:
|
101 |
+
break
|
102 |
+
frame += 1
|
103 |
+
_, _, _ = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
|
104 |
+
cap.release()
|
105 |
+
npz_files = [os.path.join(OUT_FOLDER, 'smplx', x) for x in os.listdir(os.path.join(OUT_FOLDER, 'smplx'))]
|
106 |
+
|
107 |
+
merge_npz_files(npz_files, os.path.join(OUT_FOLDER, video_name.replace(".mp4", ".npz")))
|
108 |
+
os.system(f'rm -r {OUT_FOLDER}/smplx')
|
109 |
+
npz_to_npz(os.path.join(OUT_FOLDER, video_name.replace(".mp4", ".npz")), os.path.join(OUT_FOLDER, video_name.replace(".mp4", ".npz")))
|
110 |
+
source = video_input
|
111 |
+
destination = os.path.join(OUT_FOLDER, video_name.replace('.mp4', '.npz')).replace('.npz', '.mp4')
|
112 |
+
shutil.copy(source, destination)
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
parser = argparse.ArgumentParser()
|
116 |
+
parser.add_argument("--video_folder_path", type=str, default="")
|
117 |
+
parser.add_argument("--data_save_path", type=str, default="")
|
118 |
+
parser.add_argument("--json_save_path", type=str, default="")
|
119 |
+
args = parser.parse_args()
|
120 |
+
video_folder = args.video_folder_path
|
121 |
+
|
122 |
+
DEFAULT_MODEL='smpler_x_s32'
|
123 |
+
OUT_FOLDER = args.data_save_path
|
124 |
+
os.makedirs(OUT_FOLDER, exist_ok=True)
|
125 |
+
num_gpus = 1 if torch.cuda.is_available() else -1
|
126 |
+
index = torch.cuda.current_device()
|
127 |
+
from main.inference import Inferer
|
128 |
+
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
129 |
+
|
130 |
+
for video_input in tqdm(os.listdir(video_folder)):
|
131 |
+
if not video_input.endswith(".mp4"):
|
132 |
+
continue
|
133 |
+
infer(os.path.join(video_folder, video_input), 0.5, False, False, inferer, OUT_FOLDER)
|
134 |
+
get_json(OUT_FOLDER, args.json_save_path)
|
135 |
|