File size: 22,536 Bytes
5ea4356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
import db_examples
import datetime
from pathlib import Path

from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from briarmbg import BriaRMBG
from enum import Enum
from torch.hub import download_url_to_file

try:
    import xformers
    import xformers.ops
    XFORMERS_AVAILABLE = True
    print("xformers is available - Using memory efficient attention")
except ImportError:
    XFORMERS_AVAILABLE = False
    print("xformers not available - Using default attention")

# 'stablediffusionapi/realistic-vision-v51'
# 'runwayml/stable-diffusion-v1-5'
sd15_name = 'stablediffusionapi/realistic-vision-v51'
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4")

# Change UNet

with torch.no_grad():
    new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
    new_conv_in.weight.zero_()
    new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
    new_conv_in.bias = unet.conv_in.bias
    unet.conv_in = new_conv_in

unet_original_forward = unet.forward


def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
    c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
    c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
    new_sample = torch.cat([sample, c_concat], dim=1)
    kwargs['cross_attention_kwargs'] = {}
    return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)


unet.forward = hooked_unet_forward

# Load

model_path = './models/iclight_sd15_fbc.safetensors'

if not os.path.exists(model_path):
    download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path)

# Device and dtype setup
device = torch.device('cuda')
dtype = torch.float16  # RTX 2070 works well with float16

# Memory optimizations for RTX 2070
torch.backends.cudnn.benchmark = True
if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    # Set a smaller attention slice size for RTX 2070
    torch.backends.cuda.max_split_size_mb = 512

# Move models to device with consistent dtype
text_encoder = text_encoder.to(device=device, dtype=dtype)
vae = vae.to(device=device, dtype=dtype)  # Changed from bfloat16 to float16
unet = unet.to(device=device, dtype=dtype)
rmbg = rmbg.to(device=device, dtype=torch.float32)  # Keep this as float32

# Update the state dict merging to use correct dtype
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k].to(device=device, dtype=dtype) for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged

def enable_efficient_attention():
    if XFORMERS_AVAILABLE:
        try:
            # RTX 2070 specific settings
            unet.set_use_memory_efficient_attention_xformers(True)
            vae.set_use_memory_efficient_attention_xformers(True)
            print("Enabled xformers memory efficient attention")
        except Exception as e:
            print(f"Xformers error: {e}")
            print("Falling back to sliced attention")
            # Use sliced attention for RTX 2070
            unet.set_attention_slice_size(4)
            vae.set_attention_slice_size(4)
            unet.set_attn_processor(AttnProcessor2_0())
            vae.set_attn_processor(AttnProcessor2_0())
    else:
        # Fallback for when xformers is not available
        print("Using sliced attention")
        unet.set_attention_slice_size(4)
        vae.set_attention_slice_size(4)
        unet.set_attn_processor(AttnProcessor2_0())
        vae.set_attn_processor(AttnProcessor2_0())

# Add memory clearing function
def clear_memory():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

# Enable efficient attention
enable_efficient_attention()

# Samplers

ddim_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)

euler_a_scheduler = EulerAncestralDiscreteScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    steps_offset=1
)

dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    algorithm_type="sde-dpmsolver++",
    use_karras_sigmas=True,
    steps_offset=1
)

# Pipelines

t2i_pipe = StableDiffusionPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=dpmpp_2m_sde_karras_scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None,
    image_encoder=None
)

i2i_pipe = StableDiffusionImg2ImgPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=dpmpp_2m_sde_karras_scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None,
    image_encoder=None
)


@torch.inference_mode()
def encode_prompt_inner(txt: str):
    max_length = tokenizer.model_max_length
    chunk_length = tokenizer.model_max_length - 2
    id_start = tokenizer.bos_token_id
    id_end = tokenizer.eos_token_id
    id_pad = id_end

    def pad(x, p, i):
        return x[:i] if len(x) >= i else x + [p] * (i - len(x))

    tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
    chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
    chunks = [pad(ck, id_pad, max_length) for ck in chunks]

    token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
    conds = text_encoder(token_ids).last_hidden_state

    return conds


@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
    c = encode_prompt_inner(positive_prompt)
    uc = encode_prompt_inner(negative_prompt)

    c_len = float(len(c))
    uc_len = float(len(uc))
    max_count = max(c_len, uc_len)
    c_repeat = int(math.ceil(max_count / c_len))
    uc_repeat = int(math.ceil(max_count / uc_len))
    max_chunk = max(len(c), len(uc))

    c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
    uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]

    c = torch.cat([p[None, ...] for p in c], dim=1)
    uc = torch.cat([p[None, ...] for p in uc], dim=1)

    return c, uc


@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
    results = []
    for x in imgs:
        y = x.movedim(0, -1)
        if quant:
            y = y * 127.5 + 127.5
            y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
        else:
            y = y * 0.5 + 0.5
            y = y.detach().float().cpu().numpy().clip(0, 1)
        results.append(y)
    return results


@torch.inference_mode()
def numpy2pytorch(imgs):
    h = torch.from_numpy(np.stack(imgs, axis=0)).float() * 2.0 - 1.0
    h = h.movedim(-1, 1)
    return h


def resize_and_center_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    original_width, original_height = pil_image.size
    scale_factor = max(target_width / original_width, target_height / original_height)
    resized_width = int(round(original_width * scale_factor))
    resized_height = int(round(original_height * scale_factor))
    resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
    left = (resized_width - target_width) / 2
    top = (resized_height - target_height) / 2
    right = (resized_width + target_width) / 2
    bottom = (resized_height + target_height) / 2
    cropped_image = resized_image.crop((left, top, right, bottom))
    return np.array(cropped_image)


def resize_without_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
    return np.array(resized_image)


@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
    H, W, C = img.shape
    assert C == 3
    k = (256.0 / float(H * W)) ** 0.5
    feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
    feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32)
    alpha = rmbg(feed)[0][0]
    alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
    alpha = alpha.movedim(1, -1)[0]
    alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
    result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
    return result.clip(0, 255).astype(np.uint8), alpha

def resize_to_match(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
    return np.array(resized_image)

@torch.inference_mode()
def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
    clear_memory()
    bg_source = BGSource(bg_source)

    # Get background image dimensions
    image_height, image_width, _ = input_bg.shape

    # Adjust dimensions to the nearest multiple of 64
    image_width = (image_width // 64) * 64
    image_height = (image_height // 64) * 64

    # Resize images without cropping
    fg = resize_to_match(input_fg, image_width, image_height)
    bg = resize_to_match(input_bg, image_width, image_height)

    

    if bg_source == BGSource.UPLOAD:
        pass
    elif bg_source == BGSource.UPLOAD_FLIP:
        input_bg = np.fliplr(input_bg)
    elif bg_source == BGSource.GREY:
        input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
    elif bg_source == BGSource.LEFT:
        gradient = np.linspace(224, 32, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.RIGHT:
        gradient = np.linspace(32, 224, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.TOP:
        gradient = np.linspace(224, 32, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.BOTTOM:
        gradient = np.linspace(32, 224, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    else:
        raise 'Wrong background source!'

    rng = torch.Generator(device=device).manual_seed(seed)

    fg = resize_and_center_crop(input_fg, image_width, image_height)
    bg = resize_and_center_crop(input_bg, image_width, image_height)
    concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
    concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)

    conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)

    latents = t2i_pipe(
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        width=image_width,
        height=image_height,
        num_inference_steps=steps,
        num_images_per_prompt=num_samples,
        generator=rng,
        output_type='latent',
        guidance_scale=cfg,
        cross_attention_kwargs={'concat_conds': concat_conds},
    ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    # Use quant=False to keep high-precision float32 images
    pixels = pytorch2numpy(pixels, quant=False)
    latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
    latents = latents.to(device=unet.device, dtype=unet.dtype)

    image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
    fg = resize_and_center_crop(input_fg, image_width, image_height)
    bg = resize_and_center_crop(input_bg, image_width, image_height)
    concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
    concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)

    latents = i2i_pipe(
        image=latents,
        strength=highres_denoise,
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        width=image_width,
        height=image_height,
        num_inference_steps=int(round(steps / highres_denoise)),
        num_images_per_prompt=num_samples,
        generator=rng,
        output_type='latent',
        guidance_scale=cfg,
        cross_attention_kwargs={'concat_conds': concat_conds},
    ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels, quant=False)

    clear_memory()
    return pixels, [fg, bg]


# Add save function
def save_images(images, prefix="relight"):
    # Create output directory if it doesn't exist
    output_dir = Path("outputs")
    output_dir.mkdir(exist_ok=True)
    
    # Create timestamp for unique filenames
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    
    saved_paths = []
    for i, img in enumerate(images):
        if isinstance(img, np.ndarray):
            # Convert to PIL Image if numpy array
            img = Image.fromarray(img.astype(np.uint8))
        
        # Create filename with timestamp
        filename = f"{prefix}_{timestamp}_{i+1}.png"
        filepath = output_dir / filename
        
        # Save image
        img.save(filepath)
        saved_paths.append(filepath)
    
    return saved_paths


# Modify process_relight to save images
@torch.inference_mode()
def process_relight(image_editor_output, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
    # Extract foreground and background images from the image editor
    input_fg = image_editor_output["layers"][1]["image"]
    input_bg = image_editor_output["layers"][0]["image"]
    
    input_fg, matting = run_rmbg(input_fg)
    results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
    results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
    final_results = results + extra_images
    
    
    # Save the generated images
    save_images(results, prefix="relight")
    
    return results


# Modify process_normal to save images
@torch.inference_mode()
def process_normal(image_editor_output, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
    # Extract foreground and background images from the image editor
    input_fg = image_editor_output["layers"][1]["image"]
    input_bg = image_editor_output["layers"][0]["image"]
    
    input_fg, matting = run_rmbg(input_fg, sigma=16)

    print('left ...')
    left = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.LEFT.value)[0][0]

    print('right ...')
    right = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.RIGHT.value)[0][0]

    print('bottom ...')
    bottom = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.BOTTOM.value)[0][0]

    print('top ...')
    top = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.TOP.value)[0][0]

    inner_results = [left * 2.0 - 1.0, right * 2.0 - 1.0, bottom * 2.0 - 1.0, top * 2.0 - 1.0]

    ambient = (left + right + bottom + top) / 4.0
    h, w, _ = ambient.shape
    matting = resize_and_center_crop((matting[..., 0] * 255.0).clip(0, 255).astype(np.uint8), w, h).astype(np.float32)[..., None] / 255.0

    def safa_divide(a, b):
        e = 1e-5
        return ((a + e) / (b + e)) - 1.0

    left = safa_divide(left, ambient)
    right = safa_divide(right, ambient)
    bottom = safa_divide(bottom, ambient)
    top = safa_divide(top, ambient)

    u = (right - left) * 0.5
    v = (top - bottom) * 0.5

    sigma = 10.0
    u = np.mean(u, axis=2)
    v = np.mean(v, axis=2)
    h = (1.0 - u ** 2.0 - v ** 2.0).clip(0, 1e5) ** (0.5 * sigma)
    z = np.zeros_like(h)

    normal = np.stack([u, v, h], axis=2)
    normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
    normal = normal * matting + np.stack([z, z, 1 - z], axis=2) * (1 - matting)

    results = [normal, left, right, bottom, top] + inner_results
    results = [(x * 127.5 + 127.5).clip(0, 255).astype(np.uint8) for x in results]
    
    # Save the generated images
    save_images(results, prefix="normal")
    
    return results


quick_prompts = [
    'beautiful woman',
    'handsome man',
    'beautiful woman, cinematic lighting',
    'handsome man, cinematic lighting',
    'beautiful woman, natural lighting',
    'handsome man, natural lighting',
    'beautiful woman, neo punk lighting, cyberpunk',
    'handsome man, neo punk lighting, cyberpunk',
]
quick_prompts = [[x] for x in quick_prompts]


class BGSource(Enum):
    UPLOAD = "Use Background Image"
    UPLOAD_FLIP = "Use Flipped Background Image"
    LEFT = "Left Light"
    RIGHT = "Right Light"
    TOP = "Top Light"
    BOTTOM = "Bottom Light"
    GREY = "Ambient"


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## IC-Light (Relighting with Foreground and Background Condition)")
        gr.Markdown("πŸ’Ύ Generated images are automatically saved to 'outputs' folder")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                image_editor = gr.ImageEditor(label="Edit Images", type="pil")
            prompt = gr.Textbox(label="Prompt")
            bg_source = gr.Radio(choices=[e.value for e in BGSource],
                                 value=BGSource.UPLOAD.value,
                                 label="Background Source", type='value')

            example_prompts = gr.Dataset(samples=quick_prompts, label='Prompt Quick List', components=[prompt])
            bg_gallery = gr.Gallery(height=450, label='Background Quick List', value=db_examples.bg_samples, columns=5, allow_preview=False)
            relight_button = gr.Button(value="Relight")

            with gr.Group():
                with gr.Row():
                    num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                    seed = gr.Number(label="Seed", value=12345, precision=0)
                with gr.Row():
                    image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
                    image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)

            with gr.Accordion("Advanced options", open=False):
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01)
                highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.2, step=0.01)
                highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01)
                a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='lowres, bad anatomy, bad hands, cropped, worst quality')
                normal_button = gr.Button(value="Compute Normal (4x Slower)")
        with gr.Column():
            result_gallery = gr.Image(height=832, label='Outputs')
    with gr.Row():
        dummy_image_for_outputs = gr.Image(visible=False, label='Result')
        gr.Examples(
            fn=lambda *args: [args[-1]],
            examples=db_examples.background_conditioned_examples,
            inputs=[
                image_editor, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs
            ],
            outputs=[result_gallery],
            run_on_click=True, examples_per_page=1024
        )
    ips = [image_editor, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
    relight_button.click(fn=process_relight, inputs=ips, outputs=[result_gallery])
    normal_button.click(fn=process_normal, inputs=ips, outputs=[result_gallery])
    example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False, queue=False)

    def bg_gallery_selected(gal, evt: gr.SelectData):
        return gal[evt.index]['name']

    bg_gallery.select(bg_gallery_selected, inputs=bg_gallery, outputs=image_editor)

block.launch(server_name='0.0.0.0')