Spaces:
Runtime error
Runtime error
File size: 22,536 Bytes
5ea4356 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
import db_examples
import datetime
from pathlib import Path
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from briarmbg import BriaRMBG
from enum import Enum
from torch.hub import download_url_to_file
try:
import xformers
import xformers.ops
XFORMERS_AVAILABLE = True
print("xformers is available - Using memory efficient attention")
except ImportError:
XFORMERS_AVAILABLE = False
print("xformers not available - Using default attention")
# 'stablediffusionapi/realistic-vision-v51'
# 'runwayml/stable-diffusion-v1-5'
sd15_name = 'stablediffusionapi/realistic-vision-v51'
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
# Change UNet
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
# Load
model_path = './models/iclight_sd15_fbc.safetensors'
if not os.path.exists(model_path):
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path)
# Device and dtype setup
device = torch.device('cuda')
dtype = torch.float16 # RTX 2070 works well with float16
# Memory optimizations for RTX 2070
torch.backends.cudnn.benchmark = True
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Set a smaller attention slice size for RTX 2070
torch.backends.cuda.max_split_size_mb = 512
# Move models to device with consistent dtype
text_encoder = text_encoder.to(device=device, dtype=dtype)
vae = vae.to(device=device, dtype=dtype) # Changed from bfloat16 to float16
unet = unet.to(device=device, dtype=dtype)
rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32
# Update the state dict merging to use correct dtype
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k].to(device=device, dtype=dtype) for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged
def enable_efficient_attention():
if XFORMERS_AVAILABLE:
try:
# RTX 2070 specific settings
unet.set_use_memory_efficient_attention_xformers(True)
vae.set_use_memory_efficient_attention_xformers(True)
print("Enabled xformers memory efficient attention")
except Exception as e:
print(f"Xformers error: {e}")
print("Falling back to sliced attention")
# Use sliced attention for RTX 2070
unet.set_attention_slice_size(4)
vae.set_attention_slice_size(4)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
else:
# Fallback for when xformers is not available
print("Using sliced attention")
unet.set_attention_slice_size(4)
vae.set_attention_slice_size(4)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Add memory clearing function
def clear_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Enable efficient attention
enable_efficient_attention()
# Samplers
ddim_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
euler_a_scheduler = EulerAncestralDiscreteScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
steps_offset=1
)
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
# Pipelines
t2i_pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
i2i_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
@torch.inference_mode()
def encode_prompt_inner(txt: str):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
conds = text_encoder(token_ids).last_hidden_state
return conds
@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
c = encode_prompt_inner(positive_prompt)
uc = encode_prompt_inner(negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c, uc
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() * 2.0 - 1.0
h = h.movedim(-1, 1)
return h
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return np.array(cropped_image)
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
H, W, C = img.shape
assert C == 3
k = (256.0 / float(H * W)) ** 0.5
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32)
alpha = rmbg(feed)[0][0]
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
alpha = alpha.movedim(1, -1)[0]
alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
return result.clip(0, 255).astype(np.uint8), alpha
def resize_to_match(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@torch.inference_mode()
def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
clear_memory()
bg_source = BGSource(bg_source)
# Get background image dimensions
image_height, image_width, _ = input_bg.shape
# Adjust dimensions to the nearest multiple of 64
image_width = (image_width // 64) * 64
image_height = (image_height // 64) * 64
# Resize images without cropping
fg = resize_to_match(input_fg, image_width, image_height)
bg = resize_to_match(input_bg, image_width, image_height)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise 'Wrong background source!'
rng = torch.Generator(device=device).manual_seed(seed)
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
# Use quant=False to keep high-precision float32 images
pixels = pytorch2numpy(pixels, quant=False)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels, quant=False)
clear_memory()
return pixels, [fg, bg]
# Add save function
def save_images(images, prefix="relight"):
# Create output directory if it doesn't exist
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Create timestamp for unique filenames
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
saved_paths = []
for i, img in enumerate(images):
if isinstance(img, np.ndarray):
# Convert to PIL Image if numpy array
img = Image.fromarray(img.astype(np.uint8))
# Create filename with timestamp
filename = f"{prefix}_{timestamp}_{i+1}.png"
filepath = output_dir / filename
# Save image
img.save(filepath)
saved_paths.append(filepath)
return saved_paths
# Modify process_relight to save images
@torch.inference_mode()
def process_relight(image_editor_output, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
# Extract foreground and background images from the image editor
input_fg = image_editor_output["layers"][1]["image"]
input_bg = image_editor_output["layers"][0]["image"]
input_fg, matting = run_rmbg(input_fg)
results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
final_results = results + extra_images
# Save the generated images
save_images(results, prefix="relight")
return results
# Modify process_normal to save images
@torch.inference_mode()
def process_normal(image_editor_output, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
# Extract foreground and background images from the image editor
input_fg = image_editor_output["layers"][1]["image"]
input_bg = image_editor_output["layers"][0]["image"]
input_fg, matting = run_rmbg(input_fg, sigma=16)
print('left ...')
left = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.LEFT.value)[0][0]
print('right ...')
right = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.RIGHT.value)[0][0]
print('bottom ...')
bottom = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.BOTTOM.value)[0][0]
print('top ...')
top = process(input_fg, input_bg, prompt, image_width, image_height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, BGSource.TOP.value)[0][0]
inner_results = [left * 2.0 - 1.0, right * 2.0 - 1.0, bottom * 2.0 - 1.0, top * 2.0 - 1.0]
ambient = (left + right + bottom + top) / 4.0
h, w, _ = ambient.shape
matting = resize_and_center_crop((matting[..., 0] * 255.0).clip(0, 255).astype(np.uint8), w, h).astype(np.float32)[..., None] / 255.0
def safa_divide(a, b):
e = 1e-5
return ((a + e) / (b + e)) - 1.0
left = safa_divide(left, ambient)
right = safa_divide(right, ambient)
bottom = safa_divide(bottom, ambient)
top = safa_divide(top, ambient)
u = (right - left) * 0.5
v = (top - bottom) * 0.5
sigma = 10.0
u = np.mean(u, axis=2)
v = np.mean(v, axis=2)
h = (1.0 - u ** 2.0 - v ** 2.0).clip(0, 1e5) ** (0.5 * sigma)
z = np.zeros_like(h)
normal = np.stack([u, v, h], axis=2)
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
normal = normal * matting + np.stack([z, z, 1 - z], axis=2) * (1 - matting)
results = [normal, left, right, bottom, top] + inner_results
results = [(x * 127.5 + 127.5).clip(0, 255).astype(np.uint8) for x in results]
# Save the generated images
save_images(results, prefix="normal")
return results
quick_prompts = [
'beautiful woman',
'handsome man',
'beautiful woman, cinematic lighting',
'handsome man, cinematic lighting',
'beautiful woman, natural lighting',
'handsome man, natural lighting',
'beautiful woman, neo punk lighting, cyberpunk',
'handsome man, neo punk lighting, cyberpunk',
]
quick_prompts = [[x] for x in quick_prompts]
class BGSource(Enum):
UPLOAD = "Use Background Image"
UPLOAD_FLIP = "Use Flipped Background Image"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
GREY = "Ambient"
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## IC-Light (Relighting with Foreground and Background Condition)")
gr.Markdown("πΎ Generated images are automatically saved to 'outputs' folder")
with gr.Row():
with gr.Column():
with gr.Row():
image_editor = gr.ImageEditor(label="Edit Images", type="pil")
prompt = gr.Textbox(label="Prompt")
bg_source = gr.Radio(choices=[e.value for e in BGSource],
value=BGSource.UPLOAD.value,
label="Background Source", type='value')
example_prompts = gr.Dataset(samples=quick_prompts, label='Prompt Quick List', components=[prompt])
bg_gallery = gr.Gallery(height=450, label='Background Quick List', value=db_examples.bg_samples, columns=5, allow_preview=False)
relight_button = gr.Button(value="Relight")
with gr.Group():
with gr.Row():
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)
with gr.Accordion("Advanced options", open=False):
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01)
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.2, step=0.01)
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
n_prompt = gr.Textbox(label="Negative Prompt",
value='lowres, bad anatomy, bad hands, cropped, worst quality')
normal_button = gr.Button(value="Compute Normal (4x Slower)")
with gr.Column():
result_gallery = gr.Image(height=832, label='Outputs')
with gr.Row():
dummy_image_for_outputs = gr.Image(visible=False, label='Result')
gr.Examples(
fn=lambda *args: [args[-1]],
examples=db_examples.background_conditioned_examples,
inputs=[
image_editor, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs
],
outputs=[result_gallery],
run_on_click=True, examples_per_page=1024
)
ips = [image_editor, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
relight_button.click(fn=process_relight, inputs=ips, outputs=[result_gallery])
normal_button.click(fn=process_normal, inputs=ips, outputs=[result_gallery])
example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False, queue=False)
def bg_gallery_selected(gal, evt: gr.SelectData):
return gal[evt.index]['name']
bg_gallery.select(bg_gallery_selected, inputs=bg_gallery, outputs=image_editor)
block.launch(server_name='0.0.0.0')
|