Spaces:
Runtime error
Runtime error
import os | |
import math | |
import gradio as gr | |
import numpy as np | |
import torch | |
import safetensors.torch as sf | |
import db_examples | |
import datetime | |
from pathlib import Path | |
from io import BytesIO | |
from PIL import Image | |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline | |
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from briarmbg import BriaRMBG | |
from enum import Enum | |
from torch.hub import download_url_to_file | |
from torch.hub import download_url_to_file | |
import cv2 | |
from typing import Optional | |
from Depth.depth_anything_v2.dpt import DepthAnythingV2 | |
# from FLORENCE | |
import spaces | |
import supervision as sv | |
import torch | |
from PIL import Image | |
from utils.sam import load_sam_image_model, run_sam_inference | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_AVAILABLE = True | |
print("xformers is available - Using memory efficient attention") | |
except ImportError: | |
XFORMERS_AVAILABLE = False | |
print("xformers not available - Using default attention") | |
# Memory optimizations for RTX 2070 | |
torch.backends.cudnn.benchmark = True | |
if torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
# Set a smaller attention slice size for RTX 2070 | |
torch.backends.cuda.max_split_size_mb = 512 | |
device = torch.device('cuda') | |
else: | |
device = torch.device('cpu') | |
# 'stablediffusionapi/realistic-vision-v51' | |
# 'runwayml/stable-diffusion-v1-5' | |
sd15_name = 'stablediffusionapi/realistic-vision-v51' | |
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae") | |
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet") | |
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384]) | |
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location=device)) | |
model = model.to(device) | |
model.eval() | |
# Change UNet | |
with torch.no_grad(): | |
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) | |
new_conv_in.weight.zero_() | |
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) | |
new_conv_in.bias = unet.conv_in.bias | |
unet.conv_in = new_conv_in | |
unet_original_forward = unet.forward | |
def enable_efficient_attention(): | |
if XFORMERS_AVAILABLE: | |
try: | |
# RTX 2070 specific settings | |
unet.set_use_memory_efficient_attention_xformers(True) | |
vae.set_use_memory_efficient_attention_xformers(True) | |
print("Enabled xformers memory efficient attention") | |
except Exception as e: | |
print(f"Xformers error: {e}") | |
print("Falling back to sliced attention") | |
# Use sliced attention for RTX 2070 | |
unet.set_attention_slice_size(4) | |
vae.set_attention_slice_size(4) | |
unet.set_attn_processor(AttnProcessor2_0()) | |
vae.set_attn_processor(AttnProcessor2_0()) | |
else: | |
# Fallback for when xformers is not available | |
print("Using sliced attention") | |
unet.set_attention_slice_size(4) | |
vae.set_attention_slice_size(4) | |
unet.set_attn_processor(AttnProcessor2_0()) | |
vae.set_attn_processor(AttnProcessor2_0()) | |
# Add memory clearing function | |
def clear_memory(): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
# Enable efficient attention | |
enable_efficient_attention() | |
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): | |
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) | |
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) | |
new_sample = torch.cat([sample, c_concat], dim=1) | |
kwargs['cross_attention_kwargs'] = {} | |
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) | |
unet.forward = hooked_unet_forward | |
# Load | |
model_path = './models/iclight_sd15_fc.safetensors' | |
# model_path = './models/iclight_sd15_fbc.safetensors' | |
# if not os.path.exists(model_path): | |
# download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', dst=model_path) | |
sd_offset = sf.load_file(model_path) | |
sd_origin = unet.state_dict() | |
keys = sd_origin.keys() | |
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()} | |
unet.load_state_dict(sd_merged, strict=True) | |
del sd_offset, sd_origin, sd_merged, keys | |
# Device | |
# device = torch.device('cuda') | |
# text_encoder = text_encoder.to(device=device, dtype=torch.float16) | |
# vae = vae.to(device=device, dtype=torch.bfloat16) | |
# unet = unet.to(device=device, dtype=torch.float16) | |
# rmbg = rmbg.to(device=device, dtype=torch.float32) | |
# Device and dtype setup | |
device = torch.device('cuda') | |
dtype = torch.float16 # RTX 2070 works well with float16 | |
# Memory optimizations for RTX 2070 | |
torch.backends.cudnn.benchmark = True | |
if torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
# Set a very small attention slice size for RTX 2070 to avoid OOM | |
torch.backends.cuda.max_split_size_mb = 128 | |
# Move models to device with consistent dtype | |
text_encoder = text_encoder.to(device=device, dtype=dtype) | |
vae = vae.to(device=device, dtype=dtype) # Changed from bfloat16 to float16 | |
unet = unet.to(device=device, dtype=dtype) | |
rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32 | |
ddim_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
euler_a_scheduler = EulerAncestralDiscreteScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1 | |
) | |
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
algorithm_type="sde-dpmsolver++", | |
use_karras_sigmas=True, | |
steps_offset=1 | |
) | |
# Pipelines | |
t2i_pipe = StableDiffusionPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=dpmpp_2m_sde_karras_scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
feature_extractor=None, | |
image_encoder=None | |
) | |
i2i_pipe = StableDiffusionImg2ImgPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=dpmpp_2m_sde_karras_scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
feature_extractor=None, | |
image_encoder=None | |
) | |
def encode_prompt_inner(txt: str): | |
max_length = tokenizer.model_max_length | |
chunk_length = tokenizer.model_max_length - 2 | |
id_start = tokenizer.bos_token_id | |
id_end = tokenizer.eos_token_id | |
id_pad = id_end | |
def pad(x, p, i): | |
return x[:i] if len(x) >= i else x + [p] * (i - len(x)) | |
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"] | |
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)] | |
chunks = [pad(ck, id_pad, max_length) for ck in chunks] | |
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64) | |
conds = text_encoder(token_ids).last_hidden_state | |
return conds | |
def encode_prompt_pair(positive_prompt, negative_prompt): | |
c = encode_prompt_inner(positive_prompt) | |
uc = encode_prompt_inner(negative_prompt) | |
c_len = float(len(c)) | |
uc_len = float(len(uc)) | |
max_count = max(c_len, uc_len) | |
c_repeat = int(math.ceil(max_count / c_len)) | |
uc_repeat = int(math.ceil(max_count / uc_len)) | |
max_chunk = max(len(c), len(uc)) | |
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk] | |
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk] | |
c = torch.cat([p[None, ...] for p in c], dim=1) | |
uc = torch.cat([p[None, ...] for p in uc], dim=1) | |
return c, uc | |
def pytorch2numpy(imgs, quant=True): | |
results = [] | |
for x in imgs: | |
y = x.movedim(0, -1) | |
if quant: | |
y = y * 127.5 + 127.5 | |
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
else: | |
y = y * 0.5 + 0.5 | |
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) | |
results.append(y) | |
return results | |
def numpy2pytorch(imgs): | |
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0 | |
h = h.movedim(-1, 1) | |
return h | |
def resize_and_center_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
original_width, original_height = pil_image.size | |
scale_factor = max(target_width / original_width, target_height / original_height) | |
resized_width = int(round(original_width * scale_factor)) | |
resized_height = int(round(original_height * scale_factor)) | |
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) | |
left = (resized_width - target_width) / 2 | |
top = (resized_height - target_height) / 2 | |
right = (resized_width + target_width) / 2 | |
bottom = (resized_height + target_height) / 2 | |
cropped_image = resized_image.crop((left, top, right, bottom)) | |
return np.array(cropped_image) | |
def resize_without_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
return np.array(resized_image) | |
def run_rmbg(img, sigma=0.0): | |
# Convert RGBA to RGB if needed | |
if img.shape[-1] == 4: | |
# Use white background for alpha composition | |
alpha = img[..., 3:] / 255.0 | |
rgb = img[..., :3] | |
white_bg = np.ones_like(rgb) * 255 | |
img = (rgb * alpha + white_bg * (1 - alpha)).astype(np.uint8) | |
H, W, C = img.shape | |
assert C == 3 | |
k = (256.0 / float(H * W)) ** 0.5 | |
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k))) | |
feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32) | |
alpha = rmbg(feed)[0][0] | |
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear") | |
alpha = alpha.movedim(1, -1)[0] | |
alpha = alpha.detach().float().cpu().numpy().clip(0, 1) | |
# Create RGBA image | |
rgba = np.dstack((img, alpha * 255)).astype(np.uint8) | |
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha | |
return result.clip(0, 255).astype(np.uint8), rgba | |
def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): | |
clear_memory() | |
# Get input dimensions | |
input_height, input_width = input_fg.shape[:2] | |
bg_source = BGSource(bg_source) | |
if bg_source == BGSource.UPLOAD: | |
pass | |
elif bg_source == BGSource.UPLOAD_FLIP: | |
input_bg = np.fliplr(input_bg) | |
elif bg_source == BGSource.GREY: | |
input_bg = np.zeros(shape=(input_height, input_width, 3), dtype=np.uint8) + 64 | |
elif bg_source == BGSource.LEFT: | |
gradient = np.linspace(255, 0, input_width) | |
image = np.tile(gradient, (input_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.RIGHT: | |
gradient = np.linspace(0, 255, input_width) | |
image = np.tile(gradient, (input_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.TOP: | |
gradient = np.linspace(255, 0, input_height)[:, None] | |
image = np.tile(gradient, (1, input_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.BOTTOM: | |
gradient = np.linspace(0, 255, input_height)[:, None] | |
image = np.tile(gradient, (1, input_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
else: | |
raise 'Wrong initial latent!' | |
rng = torch.Generator(device=device).manual_seed(int(seed)) | |
# Use input dimensions directly | |
fg = resize_without_crop(input_fg, input_width, input_height) | |
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) | |
if input_bg is None: | |
latents = t2i_pipe( | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=input_width, | |
height=input_height, | |
num_inference_steps=steps, | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
else: | |
bg = resize_without_crop(input_bg, input_width, input_height) | |
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype) | |
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor | |
latents = i2i_pipe( | |
image=bg_latent, | |
strength=lowres_denoise, | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=input_width, | |
height=input_height, | |
num_inference_steps=int(round(steps / lowres_denoise)), | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels) | |
pixels = [resize_without_crop( | |
image=p, | |
target_width=int(round(input_width * highres_scale / 64.0) * 64), | |
target_height=int(round(input_height * highres_scale / 64.0) * 64)) | |
for p in pixels] | |
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) | |
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor | |
latents = latents.to(device=unet.device, dtype=unet.dtype) | |
highres_height, highres_width = latents.shape[2] * 8, latents.shape[3] * 8 | |
fg = resize_without_crop(input_fg, highres_width, highres_height) | |
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
latents = i2i_pipe( | |
image=latents, | |
strength=highres_denoise, | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=highres_width, | |
height=highres_height, | |
num_inference_steps=int(round(steps / highres_denoise)), | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels) | |
# Resize back to input dimensions | |
pixels = [resize_without_crop(p, input_width, input_height) for p in pixels] | |
pixels = np.stack(pixels) | |
return pixels | |
def process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): | |
clear_memory() | |
bg_source = BGSource(bg_source) | |
if bg_source == BGSource.UPLOAD: | |
pass | |
elif bg_source == BGSource.UPLOAD_FLIP: | |
input_bg = np.fliplr(input_bg) | |
elif bg_source == BGSource.GREY: | |
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64 | |
elif bg_source == BGSource.LEFT: | |
gradient = np.linspace(224, 32, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.RIGHT: | |
gradient = np.linspace(32, 224, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.TOP: | |
gradient = np.linspace(224, 32, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.BOTTOM: | |
gradient = np.linspace(32, 224, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
else: | |
raise 'Wrong background source!' | |
rng = torch.Generator(device=device).manual_seed(seed) | |
fg = resize_and_center_crop(input_fg, image_width, image_height) | |
bg = resize_and_center_crop(input_bg, image_width, image_height) | |
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) | |
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) | |
latents = t2i_pipe( | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=image_width, | |
height=image_height, | |
num_inference_steps=steps, | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels) | |
pixels = [resize_without_crop( | |
image=p, | |
target_width=int(round(image_width * highres_scale / 64.0) * 64), | |
target_height=int(round(image_height * highres_scale / 64.0) * 64)) | |
for p in pixels] | |
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) | |
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor | |
latents = latents.to(device=unet.device, dtype=unet.dtype) | |
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8 | |
fg = resize_and_center_crop(input_fg, image_width, image_height) | |
bg = resize_and_center_crop(input_bg, image_width, image_height) | |
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) | |
latents = i2i_pipe( | |
image=latents, | |
strength=highres_denoise, | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=image_width, | |
height=image_height, | |
num_inference_steps=int(round(steps / highres_denoise)), | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels, quant=False) | |
clear_memory() | |
return pixels, [fg, bg] | |
def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): | |
input_fg, matting = run_rmbg(input_fg) | |
results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source) | |
return input_fg, results | |
def process_relight_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): | |
bg_source = BGSource(bg_source) | |
# Convert numerical inputs to appropriate types | |
image_width = int(image_width) | |
image_height = int(image_height) | |
num_samples = int(num_samples) | |
seed = int(seed) | |
steps = int(steps) | |
cfg = float(cfg) | |
highres_scale = float(highres_scale) | |
highres_denoise = float(highres_denoise) | |
if bg_source == BGSource.UPLOAD: | |
pass | |
elif bg_source == BGSource.UPLOAD_FLIP: | |
input_bg = np.fliplr(input_bg) | |
elif bg_source == BGSource.GREY: | |
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64 | |
elif bg_source == BGSource.LEFT: | |
gradient = np.linspace(224, 32, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.RIGHT: | |
gradient = np.linspace(32, 224, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.TOP: | |
gradient = np.linspace(224, 32, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.BOTTOM: | |
gradient = np.linspace(32, 224, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
else: | |
raise ValueError('Wrong background source!') | |
input_fg, matting = run_rmbg(input_fg) | |
results, extra_images = process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source) | |
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results] | |
final_results = results + extra_images | |
# Save the generated images | |
save_images(results, prefix="relight") | |
return results | |
quick_prompts = [ | |
'sunshine from window', | |
'neon light, city', | |
'sunset over sea', | |
'golden time', | |
'sci-fi RGB glowing, cyberpunk', | |
'natural lighting', | |
'warm atmosphere, at home, bedroom', | |
'magic lit', | |
'evil, gothic, Yharnam', | |
'light and shadow', | |
'shadow from window', | |
'soft studio lighting', | |
'home atmosphere, cozy bedroom illumination', | |
'neon, Wong Kar-wai, warm' | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
quick_subjects = [ | |
'modern sofa, high quality leather', | |
'elegant dining table, polished wood', | |
'luxurious bed, premium mattress', | |
'minimalist office desk, clean design', | |
'vintage wooden cabinet, antique finish', | |
] | |
quick_subjects = [[x] for x in quick_subjects] | |
class BGSource(Enum): | |
UPLOAD = "Use Background Image" | |
UPLOAD_FLIP = "Use Flipped Background Image" | |
LEFT = "Left Light" | |
RIGHT = "Right Light" | |
TOP = "Top Light" | |
BOTTOM = "Bottom Light" | |
GREY = "Ambient" | |
# Add save function | |
def save_images(images, prefix="relight"): | |
# Create output directory if it doesn't exist | |
output_dir = Path("outputs") | |
output_dir.mkdir(exist_ok=True) | |
# Create timestamp for unique filenames | |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
saved_paths = [] | |
for i, img in enumerate(images): | |
if isinstance(img, np.ndarray): | |
# Convert to PIL Image if numpy array | |
img = Image.fromarray(img) | |
# Create filename with timestamp | |
filename = f"{prefix}_{timestamp}_{i+1}.png" | |
filepath = output_dir / filename | |
# Save image | |
img.save(filepath) | |
# print(f"Saved {len(saved_paths)} images to {output_dir}") | |
return saved_paths | |
class MaskMover: | |
def __init__(self): | |
self.extracted_fg = None | |
self.original_fg = None # Store original foreground | |
def set_extracted_fg(self, fg_image): | |
"""Store the extracted foreground with alpha channel""" | |
if isinstance(fg_image, np.ndarray): | |
self.extracted_fg = fg_image.copy() | |
self.original_fg = fg_image.copy() | |
else: | |
self.extracted_fg = np.array(fg_image) | |
self.original_fg = np.array(fg_image) | |
return self.extracted_fg | |
def create_composite(self, background, x_pos, y_pos, scale=1.0): | |
"""Create composite with foreground at specified position""" | |
if self.original_fg is None or background is None: | |
return background | |
# Convert inputs to PIL Images | |
if isinstance(background, np.ndarray): | |
bg = Image.fromarray(background).convert('RGBA') | |
else: | |
bg = background.convert('RGBA') | |
if isinstance(self.original_fg, np.ndarray): | |
fg = Image.fromarray(self.original_fg).convert('RGBA') | |
else: | |
fg = self.original_fg.convert('RGBA') | |
# Scale the foreground size | |
new_width = int(fg.width * scale) | |
new_height = int(fg.height * scale) | |
fg = fg.resize((new_width, new_height), Image.LANCZOS) | |
# Center the scaled foreground at the position | |
x = int(x_pos - new_width / 2) | |
y = int(y_pos - new_height / 2) | |
# Create composite | |
result = bg.copy() | |
result.paste(fg, (x, y), fg) # Use fg as the mask (requires fg to be in 'RGBA' mode) | |
return np.array(result.convert('RGB')) # Convert back to 'RGB' if needed | |
def get_depth(image): | |
if image is None: | |
return None | |
# Convert from PIL/gradio format to cv2 | |
raw_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
# Get depth map | |
depth = model.infer_image(raw_img) # HxW raw depth map | |
# Normalize depth for visualization | |
depth = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8) | |
# Convert to RGB for display | |
depth_colored = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) | |
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB) | |
return Image.fromarray(depth_colored) | |
from PIL import Image | |
def compress_image(image): | |
# Convert Gradio image (numpy array) to PIL Image | |
img = Image.fromarray(image) | |
# Resize image if dimensions are too large | |
max_size = 1024 # Maximum dimension size | |
if img.width > max_size or img.height > max_size: | |
ratio = min(max_size/img.width, max_size/img.height) | |
new_size = (int(img.width * ratio), int(img.height * ratio)) | |
img = img.resize(new_size, Image.Resampling.LANCZOS) | |
quality = 95 # Start with high quality | |
img.save("compressed_image.jpg", "JPEG", quality=quality) # Initial save | |
# Check file size and adjust quality if necessary | |
while os.path.getsize("compressed_image.jpg") > 100 * 1024: # 100KB limit | |
quality -= 5 # Decrease quality | |
img.save("compressed_image.jpg", "JPEG", quality=quality) | |
if quality < 20: # Prevent quality from going too low | |
break | |
# Convert back to numpy array for Gradio | |
compressed_img = np.array(Image.open("compressed_image.jpg")) | |
return compressed_img | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Tab("Text"): | |
with gr.Row(): | |
gr.Markdown("## Product Placement from Text") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_fg = gr.Image(type="numpy", label="Image", height=480) | |
output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480) | |
with gr.Group(): | |
prompt = gr.Textbox(label="Prompt") | |
bg_source = gr.Radio(choices=[e.value for e in BGSource], | |
value=BGSource.GREY.value, | |
label="Lighting Preference (Initial Latent)", type='value') | |
example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt]) | |
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt]) | |
relight_button = gr.Button(value="Relight") | |
with gr.Group(): | |
with gr.Row(): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
seed = gr.Number(label="Seed", value=12345, precision=0) | |
with gr.Row(): | |
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) | |
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) | |
with gr.Accordion("Advanced options", open=False): | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=15, step=1) | |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01) | |
lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01) | |
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01) | |
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality') | |
with gr.Column(): | |
result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs') | |
with gr.Row(): | |
dummy_image_for_outputs = gr.Image(visible=False, label='Result') | |
# gr.Examples( | |
# fn=lambda *args: ([args[-1]], None), | |
# examples=db_examples.foreground_conditioned_examples, | |
# inputs=[ | |
# input_fg, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs | |
# ], | |
# outputs=[result_gallery, output_bg], | |
# run_on_click=True, examples_per_page=1024 | |
# ) | |
ips = [input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source] | |
relight_button.click(fn=process_relight, inputs=ips, outputs=[output_bg, result_gallery]) | |
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False) | |
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False) | |
with gr.Tab("Background", visible=False): | |
mask_mover = MaskMover() | |
with gr.Row(): | |
gr.Markdown("## IC-Light (Relighting with Foreground and Background Condition)") | |
gr.Markdown("πΎ Generated images are automatically saved to 'outputs' folder") | |
with gr.Row(): | |
with gr.Column(): | |
# Step 1: Input and Extract | |
with gr.Row(): | |
with gr.Group(): | |
gr.Markdown("### Step 1: Extract Foreground") | |
input_image = gr.Image(type="numpy", label="Input Image", height=480) | |
# find_objects_button = gr.Button(value="Find Objects") | |
extract_button = gr.Button(value="Remove Background") | |
extracted_fg = gr.Image(type="numpy", label="Extracted Foreground", height=480) | |
with gr.Row(): | |
# Step 2: Background and Position | |
with gr.Group(): | |
gr.Markdown("### Step 2: Position on Background") | |
input_bg = gr.Image(type="numpy", label="Background Image", height=480) | |
with gr.Row(): | |
x_slider = gr.Slider( | |
minimum=0, | |
maximum=1000, | |
label="X Position", | |
value=500, | |
visible=False | |
) | |
y_slider = gr.Slider( | |
minimum=0, | |
maximum=1000, | |
label="Y Position", | |
value=500, | |
visible=False | |
) | |
fg_scale_slider = gr.Slider( | |
label="Foreground Scale", | |
minimum=0.01, | |
maximum=3.0, | |
value=1.0, | |
step=0.01 | |
) | |
editor = gr.ImageEditor( | |
type="numpy", | |
label="Position Foreground", | |
height=480, | |
visible=False | |
) | |
get_depth_button = gr.Button(value="Get Depth") | |
depth_image = gr.Image(type="numpy", label="Depth Image", height=480) | |
# Step 3: Relighting Options | |
with gr.Group(): | |
gr.Markdown("### Step 3: Relighting Settings") | |
prompt = gr.Textbox(label="Prompt") | |
bg_source = gr.Radio( | |
choices=[e.value for e in BGSource], | |
value=BGSource.UPLOAD.value, | |
label="Background Source", | |
type='value' | |
) | |
example_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label='Prompt Quick List', | |
components=[prompt] | |
) | |
# bg_gallery = gr.Gallery( | |
# height=450, | |
# label='Background Quick List', | |
# value=db_examples.bg_samples, | |
# columns=5, | |
# allow_preview=False | |
# ) | |
relight_button_bg = gr.Button(value="Relight") | |
# Additional settings | |
with gr.Group(): | |
with gr.Row(): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
seed = gr.Number(label="Seed", value=12345, precision=0) | |
with gr.Row(): | |
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) | |
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) | |
with gr.Accordion("Advanced options", open=False): | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01) | |
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.2, step=0.01) | |
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality') | |
n_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value='lowres, bad anatomy, bad hands, cropped, worst quality' | |
) | |
with gr.Column(): | |
result_gallery = gr.Image(height=832, label='Outputs') | |
def extract_foreground(image): | |
if image is None: | |
return None, gr.update(visible=True), gr.update(visible=True) | |
result, rgba = run_rmbg(image) | |
mask_mover.set_extracted_fg(rgba) | |
return result, gr.update(visible=True), gr.update(visible=True) | |
original_bg = None | |
extract_button.click( | |
fn=extract_foreground, | |
inputs=[input_image], | |
outputs=[extracted_fg, x_slider, y_slider] | |
) | |
# find_objects_button.click( | |
# fn=find_objects, | |
# inputs=[input_image], | |
# outputs=[extracted_fg] | |
# ) | |
get_depth_button.click( | |
fn=get_depth, | |
inputs=[input_bg], | |
outputs=[depth_image] | |
) | |
# def update_position(background, x_pos, y_pos, scale): | |
# """Update composite when position changes""" | |
# global original_bg | |
# if background is None: | |
# return None | |
# if original_bg is None: | |
# original_bg = background.copy() | |
# # Convert string values to float | |
# x_pos = float(x_pos) | |
# y_pos = float(y_pos) | |
# scale = float(scale) | |
# return mask_mover.create_composite(original_bg, x_pos, y_pos, scale) | |
class BackgroundManager: | |
def __init__(self): | |
self.original_bg = None | |
def update_position(self, background, x_pos, y_pos, scale): | |
"""Update composite when position changes""" | |
if background is None: | |
return None | |
if self.original_bg is None: | |
self.original_bg = background.copy() | |
# Convert string values to float | |
x_pos = float(x_pos) | |
y_pos = float(y_pos) | |
scale = float(scale) | |
return mask_mover.create_composite(self.original_bg, x_pos, y_pos, scale) | |
# Create an instance of BackgroundManager | |
bg_manager = BackgroundManager() | |
x_slider.change( | |
fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale), | |
inputs=[input_bg, x_slider, y_slider, fg_scale_slider], | |
outputs=[input_bg] | |
) | |
y_slider.change( | |
fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale), | |
inputs=[input_bg, x_slider, y_slider, fg_scale_slider], | |
outputs=[input_bg] | |
) | |
fg_scale_slider.change( | |
fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale), | |
inputs=[input_bg, x_slider, y_slider, fg_scale_slider], | |
outputs=[input_bg] | |
) | |
# Update inputs list to include fg_scale_slider | |
def process_relight_with_position(*args): | |
if mask_mover.extracted_fg is None: | |
gr.Warning("Please extract foreground first") | |
return None | |
background = args[1] # Get background image | |
x_pos = float(args[-3]) # x_slider value | |
y_pos = float(args[-2]) # y_slider value | |
scale = float(args[-1]) # fg_scale_slider value | |
# Get original foreground size after scaling | |
fg = Image.fromarray(mask_mover.original_fg) | |
new_width = int(fg.width * scale) | |
new_height = int(fg.height * scale) | |
# Calculate crop region around foreground position | |
crop_x = int(x_pos - new_width/2) | |
crop_y = int(y_pos - new_height/2) | |
crop_width = new_width | |
crop_height = new_height | |
# Add padding for context (20% extra on each side) | |
padding = 0.2 | |
crop_x = int(crop_x - crop_width * padding) | |
crop_y = int(crop_y - crop_height * padding) | |
crop_width = int(crop_width * (1 + 2 * padding)) | |
crop_height = int(crop_height * (1 + 2 * padding)) | |
# Ensure crop dimensions are multiples of 8 | |
crop_width = ((crop_width + 7) // 8) * 8 | |
crop_height = ((crop_height + 7) // 8) * 8 | |
# Ensure crop region is within image bounds | |
bg_height, bg_width = background.shape[:2] | |
crop_x = max(0, min(crop_x, bg_width - crop_width)) | |
crop_y = max(0, min(crop_y, bg_height - crop_height)) | |
# Get actual crop dimensions after boundary check | |
crop_width = min(crop_width, bg_width - crop_x) | |
crop_height = min(crop_height, bg_height - crop_y) | |
# Ensure dimensions are multiples of 8 again | |
crop_width = (crop_width // 8) * 8 | |
crop_height = (crop_height // 8) * 8 | |
# Crop region from background | |
crop_region = background[crop_y:crop_y+crop_height, crop_x:crop_x+crop_width] | |
# Create composite in cropped region | |
fg_local_x = int(new_width/2 + crop_width*padding) | |
fg_local_y = int(new_height/2 + crop_height*padding) | |
cropped_composite = mask_mover.create_composite(crop_region, fg_local_x, fg_local_y, scale) | |
# Process the cropped region | |
crop_args = list(args) | |
crop_args[0] = cropped_composite | |
crop_args[1] = crop_region | |
crop_args[3] = crop_width | |
crop_args[4] = crop_height | |
crop_args = crop_args[:-3] # Remove position and scale arguments | |
# Get relit result | |
relit_crop = process_relight_bg(*crop_args)[0] | |
# Resize relit result to match crop dimensions if needed | |
if relit_crop.shape[:2] != (crop_height, crop_width): | |
relit_crop = resize_without_crop(relit_crop, crop_width, crop_height) | |
# Place relit crop back into original background | |
result = background.copy() | |
result[crop_y:crop_y+crop_height, crop_x:crop_x+crop_width] = relit_crop | |
return result | |
ips_bg = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source] | |
# Update button click events with new inputs list | |
relight_button_bg.click( | |
fn=process_relight_with_position, | |
inputs=ips_bg, | |
outputs=[result_gallery] | |
) | |
example_prompts.click( | |
fn=lambda x: x[0], | |
inputs=example_prompts, | |
outputs=prompt, | |
show_progress=False, | |
queue=False | |
) | |
block.launch(server_name='0.0.0.0', share=True) | |