Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
import base64 | |
from PIL import Image, ImageDraw | |
from io import BytesIO | |
import re | |
from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM | |
from deepseek_vl2.utils.io import load_pil_images | |
from transformers import AutoModelForCausalLM | |
models = { | |
"deepseek-ai/deepseek-vl2-tiny": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-tiny", trust_remote_code=True), | |
#"deepseek-ai/deepseek-vl2-small": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-small", trust_remote_code=True), | |
#"deepseek-ai/deepseek-vl2": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2", trust_remote_code=True) | |
} | |
processors = { | |
"deepseek-ai/deepseek-vl2-tiny": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-tiny",), | |
#"deepseek-ai/deepseek-vl2-small": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-small",), | |
#"deepseek-ai/deepseek-vl2": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2",), | |
} | |
def image_to_base64(image): | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
return img_str | |
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): | |
draw = ImageDraw.Draw(image) | |
for box in bounding_boxes: | |
xmin, ymin, xmax, ymax = box | |
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) | |
return image | |
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): | |
x_scale = original_width / scaled_width | |
y_scale = original_height / scaled_height | |
rescaled_boxes = [] | |
for box in bounding_boxes: | |
xmin, ymin, xmax, ymax = box | |
rescaled_box = [ | |
xmin * x_scale, | |
ymin * y_scale, | |
xmax * x_scale, | |
ymax * y_scale | |
] | |
rescaled_boxes.append(rescaled_box) | |
return rescaled_boxes | |
def deepseek(image, text_input, model_id): | |
# specify the path to the model | |
vl_chat_processor: DeepseekVLV2Processor = processors[model_id] | |
tokenizer = vl_chat_processor.tokenizer | |
vl_gpt: DeepseekVLV2ForCausalLM = models[model_id] | |
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() | |
## single image conversation example | |
conversation = [ | |
{ | |
"role": "<|User|>", | |
"content": f"<image><|ref|>{text_input}<|/ref|>.", | |
"images": ["./images/visual_grounding_1.jpeg"], | |
}, | |
{"role": "<|Assistant|>", "content": ""}, | |
] | |
# load images and prepare for inputs | |
#pil_images = load_pil_images(conversation) | |
prepare_inputs = vl_chat_processor( | |
conversations=conversation, | |
images=[image], | |
force_batchify=True, | |
system_prompt="" | |
).to(vl_gpt.device) | |
with torch.no_grad(): | |
# run image encoder to get the image embeddings | |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) | |
inputs_embeds, past_key_values = vl_gpt.incremental_prefilling( | |
input_ids=prepare_inputs.input_ids, | |
images=prepare_inputs.images, | |
images_seq_mask=prepare_inputs.images_seq_mask, | |
images_spatial_crop=prepare_inputs.images_spatial_crop, | |
attention_mask=prepare_inputs.attention_mask, | |
chunk_size=512 # prefilling size | |
) | |
# run the model to get the response | |
outputs = vl_gpt.generate( | |
inputs_embeds=inputs_embeds, | |
input_ids=prepare_inputs.input_ids, | |
images=prepare_inputs.images, | |
images_seq_mask=prepare_inputs.images_seq_mask, | |
images_spatial_crop=prepare_inputs.images_spatial_crop, | |
attention_mask=prepare_inputs.attention_mask, | |
past_key_values=past_key_values, | |
pad_token_id=tokenizer.eos_token_id, | |
bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
max_new_tokens=512, | |
do_sample=False, | |
use_cache=True, | |
) | |
answer = tokenizer.decode(outputs[0][len(prepare_inputs.input_ids[0]):].cpu().tolist(), skip_special_tokens=False) | |
print(f"{prepare_inputs['sft_format'][0]}", answer) | |
det_pattern = r"<\|det\|>\[\[(.+)]]<\|\/det\|>" | |
det_match = re.search(det_pattern, answer) | |
if det_match is None: | |
return text_input, [], image | |
det_content = det_match.group(1) | |
bbox = [int(v.strip()) for v in det_content.split(",")] | |
scaled_boxes = rescale_bounding_boxes([bbox], image.width, image.height) | |
return answer, scaled_boxes, draw_bounding_boxes(image, scaled_boxes) | |
def run_example(image, text_input, model_id="deepseek-ai/deepseek-vl2-tiny"): | |
return deepseek(image, text_input, model_id) | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
# Demo for Deepseek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Image", type="pil") | |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="deepseek-ai/deepseek-vl2-tiny") | |
text_input = gr.Textbox(label="User Prompt") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
model_output_text = gr.Textbox(label="Model Output Text") | |
model_output_box = gr.Textbox(label="Model Output Box") | |
annotated_image = gr.Image(label="Annotated Image") | |
gr.Examples( | |
examples=[ | |
["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "select search textfield"], | |
["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "switch to discussions"], | |
], | |
inputs=[input_img, text_input], | |
outputs=[model_output_text, model_output_box, annotated_image], | |
fn=run_example, | |
cache_examples=True, | |
label="Try examples" | |
) | |
submit_btn.click(run_example, [input_img, text_input, model_selector], [model_output_text, model_output_box, annotated_image]) | |
demo.launch(debug=True) |