Ori commited on
Commit
b6a4ebd
·
verified ·
1 Parent(s): 0051bf0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +234 -250
app.py CHANGED
@@ -1,294 +1,278 @@
1
  import os
2
  import json
3
  import datetime
4
- import smtplib
5
- from email.mime.text import MIMEText
6
- from email.mime.multipart import MIMEMultipart
7
  from email.utils import parseaddr
8
  import numpy as np
9
  import gradio as gr
10
  import pandas as pd
11
  from datasets import load_dataset
 
12
  from apscheduler.schedulers.background import BackgroundScheduler
13
  from huggingface_hub import HfApi
 
 
 
 
 
 
14
 
15
- TOKEN = os.environ.get("TOKEN", None)
16
- SUBMISSION_DATASET = "KoLMogorov-Test/submissions"
17
- VERSION = "v1"
18
 
 
 
 
 
 
 
 
19
  api = HfApi()
20
 
21
-
22
- def format_error(msg):
23
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"
 
 
 
 
 
 
 
 
24
 
25
- def format_warning(msg):
26
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"
 
 
 
 
 
 
27
 
28
- def format_log(msg):
29
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"
 
 
 
 
 
 
 
30
 
31
- def model_hyperlink(link, model_name):
32
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
33
 
 
 
 
34
 
35
  # Function to restart the space
36
  def restart_space():
37
- return
 
38
 
39
  TYPES = ["markdown", "markdown", "number", "number", "number", "number", "number", "number", "str", "str"]
40
 
41
 
42
- def save_files_for_eval(
43
- model_name: str,
44
- organization: str,
45
- organization_email: str,
46
- path_to_file,
47
- prior_file,
48
- results_json,
49
- modality: str,
50
- split: str,
51
- token: str,
52
  ):
53
- # Validate inputs
54
- if not model_name:
55
- return format_error("Model name is required.")
56
- if not organization and organization_email:
57
- return format_error("Organization and email required.")
58
-
59
- # Get the current date for the directory name
60
- date_str = datetime.datetime.today().strftime('%Y-%m-%d')
61
-
62
- # Define the base path in the repository (remove leading slash)
63
- base_path_in_repo = f"{organization}/{model_name}/{VERSION}_{split}_{modality}_{date_str}"
64
-
65
- # List of files to upload
66
- files_to_upload = [
67
- (path_to_file, "prediction.jsonl"),
68
- (prior_file, "decoder.py"),
69
- (results_json, "results.json")
70
- ]
71
-
72
- # Upload each file
73
- for file, filename in files_to_upload:
74
- if file is not None:
75
- path_in_repo = f"{base_path_in_repo}/{filename}"
76
- api.upload_file(
77
- repo_id=SUBMISSION_DATASET,
78
- path_or_fileobj=file.name,
79
- path_in_repo=path_in_repo,
80
- repo_type="dataset",
81
- token=token
82
- )
83
- else:
84
- return format_error(f"File {filename} is missing.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
- return format_log("All files uploaded successfully. Please email us at [email protected] to verify your submission.")
 
 
 
 
 
87
 
88
 
89
  # Gradio interface
90
  demo = gr.Blocks()
91
  with demo:
92
- gr.HTML("""<h1 id="space-title">The KoLMogorov-Test: Can CodeLMs lead to the next breakthrough in data compression?</h1>""")
93
- gr.HTML("""The Kolmogorov complexity of a sequence is the length of the shortest computer program that produces the sequence. <br><br>The aim of the KoLMogorov-Test (KT) is to empirically evaluate the ability of CodeLMs to detect patterns in and compress sequences by writing short programs that output them.
94
- <h2>The Task</h2>
95
- Given a sequence, the CodeLM is asked to produce a short python program that outputs the sequence. The programs are compressed by a user-defined compressor before submission, and code length is measured in compressed form. In order to evaluate the correctness of a program, it is first decoded using a user-provided decoder and then executed. The decoder size counts towards the compressed length, and may contain e.g. a library of helper functions (DSL). <br><br>
96
-
97
- The length of python and its standard library are not counted, but in order to prevent cheating the programs must pass a stringent check. Programs cannot import arbitrary modules, use advanced language features, access the internet, etc. <br><br>
98
-
99
- KT currently includes six modalities - text, DNA, three encodings of audio data (MFCC, 16-bit, and 8-bit), and synthetic sequences produced by random programs. Two dataset sizes are available: a small one with 1MB per modality, and a large one with 1GB.""")
100
-
101
- gr.HTML("""<h2>Getting Started</h2>
102
- Download the data from <a href="https://www.example.com" target="_blank">here</a>.
103
- <br><br>We provide code to reproduce experiments from the paper including our DSL and evaluation code at the <a href="https://www.example.com" target="_blank">GitHub repo</a>.
104
- <br><br>You are allowed to:<br><br>
105
- <ul>
106
- <li>Split the original sequence to subsequent sub-sequences.</li>
107
- <li>Use the standard python library including Gzip.</li>
108
- <li>Create new DSLs.</li>
109
- <li>Create new priors to encode the programs.</li>
110
- </ul>
111
-
112
- <br>With the following restrictions:<br><br>
113
- <ul>
114
- <li>To prevent cases where compression of the data is performed by external code, we prevent access to the internet and usage of previous compression algorithms, excluding Gzip which is viewed as a strong baseline. </li>
115
- <li>We return the compression rate with and without the cost of the decoder. When reporting results, we consider the additional code as negligible if it is &lt100KB and does not scale with the length of the sequence. When reporting results for the 1GB seqeunces, please always report results including the decoder.</li>
116
- </ul>
117
-
118
- <br>If you have any questions, please email us at <a href="mailto:thekolmogorovtest@gmail.com">[email protected]</a>.
119
-
120
- """)
121
-
122
- gr.HTML("""<h2>Making a New Submission</h2>""")
123
-
124
- gr.Markdown("""To make a new submission, upload three files - a file with the encoded program, a file that decodes the programs to executable code, and a file with the expected results. Let's consider a toy example for the sequence [5, 10, 13, 14, 16, 5, 5, 5].""")
125
-
126
- gr.Markdown("""The programs file is a jsonl that follows the following format. We recommend submitting a single program for the whole sequence:
127
- ```
128
- {"sub_sequence_start_index": 0, "sub_sequence_end_index": 7 (the length of the sequence), "encoded_program": "H4sIAI7Te2cC/8svLSkoLVGwVYg21VEwNABiYyA2AWIzHQVTCIoFAMxnYTIlAAAA (An encoding of the program whose execution results in the input sequence. This is the Gzip encoding of the program that returns the input sequence)."}
129
- ```
130
-
131
- For simplicity, we allow splitting to subsequent sub-sequences:
132
- ```
133
- {"sub_sequence_start_index": 0, "sub_sequence_end_index": k, "encoded_program": "An encoding of the program whose execution results in the subsequence between indeses [0, n]."}
134
- {"sub_sequence_start_index": k+1, "sub_sequence_end_index": k+1+j, "encoded_program": "An encoding of the program whose execution results in the subsequence between indeses [n+1, n+1+m]."}
135
- ...
136
- {"sub_sequence_start_index": n, "sub_sequence_end_index": len(sequence), "encoded_program": "An encoding of the program whose execution results in the subsequence between indeses [n, len(sequence)]."}
137
- ```
138
- """)
139
-
140
- gr.Markdown("""For decoding, upload a python file that implements the 'decode' method, which receives as input an programs from the programs file and returns the executable python program. Executing the decoded program must result in the input sequence. For example, this is a decoder that decompresses using Gzip.
141
- ```
142
- import gzip
143
- import base64
144
-
145
- def decode(program):
146
- return gzip.decompress(base64.b64decode(program)).decode('utf-8')
147
- ```
148
- """)
149
-
150
- gr.Markdown("""For the results, upload a Json file that matches the Result object returned from the <a href="https://www.example.com" target="_blank">official evaluation script</a>. If you are interested in verification of your results, please <a href="mailto:[email protected]">email us</a> after submitting, we will then verify the results.
151
- ```
152
- {
153
- "compressed_programs_size": 64,
154
- "decoder_size": 118,
155
- "compressed_size": 182,
156
- "compression_rate_without_decoder": 8.0,
157
- "compression_rate": 22.75,
158
- "accuracy": 1,
159
- "gold_data_size": 8,
160
- "first_error": null
161
- }
162
- ```
163
- """)
164
-
165
- with gr.Accordion(""):
166
  with gr.Row():
167
  with gr.Column():
168
  model_name_textbox = gr.Textbox(label="Model Name")
 
 
 
169
  organization = gr.Textbox(label="Organization")
170
  mail = gr.Textbox(
171
- label="Contact Email (will be stored privately)"
172
- )
173
- split_dropdown = gr.Dropdown(
174
- choices=["Small (1MB)", "Large (1GB)"],
175
- label="Size",
176
- )
177
- modality_dropdown = gr.Dropdown(
178
- choices=["Text", "Dna", "Audio-MFCC", "Audio-16-Bit", "Audio-8-Bit", "Synthetic"],
179
- label="Modality",
180
- )
181
- prior_dropdown = gr.Dropdown(
182
- choices=["Custom (attached file)", "None"],
183
- label="Decoding",
184
- )
185
- url_textbox = gr.Textbox(label="URL to Project Information",
186
- interactive=True,)
187
- model_family_textbox = gr.Textbox(label="Base Model")
188
 
189
- with gr.Column():
190
- file_output = gr.File(label="Programs File")
191
- prior_file = gr.File(label="Decoder File")
192
- results_json = gr.File(label="Results Json")
193
-
194
- submit_button = gr.Button("Submit")
195
  submission_result = gr.Markdown()
196
-
197
- submit_button.click(
198
- lambda model_name, split, model_family, url, path_to_file, organization, mail, prior_file, results_json, prior_dropdown, modality_dropdown: (
199
- save_files_for_eval(
200
- model_name,
 
 
201
  organization,
202
- mail,
203
- path_to_file,
204
- prior_file,
205
- results_json,
206
- modality_dropdown,
207
- split,
208
- TOKEN # Ensure TOKEN is defined and accessible
209
- )
210
- ),
211
- [
212
- model_name_textbox,
213
- split_dropdown,
214
- model_family_textbox,
215
- url_textbox,
216
- file_output,
217
- organization,
218
- mail,
219
- prior_file,
220
- results_json,
221
- prior_dropdown,
222
- modality_dropdown
223
- ],
224
- submission_result,
225
- )
226
 
227
- data = {
228
- "Text": {
229
- "Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
230
- "Pass@1": [100, 69.5, 33.3, 18.0, 8.5],
231
- "Precision": [1.0, 1.34, 2.18, 2.78, 2.48],
232
- "Compression Rate": [0.357, "n/a", "n/a", "n/a", "n/a"],
233
- "Verified": ['✓', '✓', '✓', '✓', '✓'],
234
- },
235
- "DNA": {
236
- "Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
237
- "Pass@1": [100, 54.2, 6.5, 9.6, 1.4],
238
- "Precision": [1.0, 1.94, 3.17, 3.17, 3.12],
239
- "Compression Rate": [0.714, "n/a", "n/a", "n/a", "n/a"],
240
- "Verified": ['✓', '✓', '✓', '✓', '✓'],
241
- },
242
- "Audio-8-bit": {
243
- "Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
244
- "Pass@1": [100, 36.4, 15.0, 10.1, 3.9],
245
- "Precision": [1.0, 1.43, 1.66, 1.67, 1.74],
246
- "Compression Rate": [0.398, "n/a", "n/a", "n/a", "n/a"],
247
- "Verified": ['✓', '✓', '✓', '✓', '✓'],
248
- },
249
- "Audio-16-bit": {
250
- "Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
251
- "Pass@1": [100, 69.5, 35.6, 18.0, 5.9],
252
- "Precision": [1.0, 1.34, 1.66, 1.96, 1.54],
253
- "Compression Rate": [0.920, "n/a", "n/a", "n/a", "n/a"],
254
- "Verified": ['✓', '✓', '✓', '✓', '✓'],
255
- },
256
- "Audio-MFCC": {
257
- "Model": ["Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
258
- "Pass@1": [100, 83.8, 29.6, 24.2, 8.8],
259
- "Precision": [1.0, 1.33, 1.58, 1.56, 1.51],
260
- "Compression Rate": [0.903, "n/a", "n/a", "n/a", "n/a"],
261
- "Verified": ['✓', '✓', '✓', '✓', '✓'],
262
- },
263
- "Synthetic": {
264
- "Model": ["SeqCoder-8B + Gzip", "Gzip", "GPT4-o", "LLAMA-3.1-405B", "LLAMA-3.1-70B", "LLAMA-3.1-8B"],
265
- "Pass@1": [100, 100, 44.7, 24.8, 22.5, 3.7],
266
- "Precision": [0.64, 1.0, 1.65, 2.06, 2.18, 2.34],
267
- "Compression Rate": [0.38, 0.593, "n/a", "n/a", "n/a", "n/a"],
268
- "Verified": ['✓', '✓', '✓', '✓', '✓', '✓'],
269
- },
270
- }
271
-
272
-
273
- gr.HTML("<h2>KT Leaderboard - Can you beat Gzip on KT?</h2>")
274
- for k,v in data.items():
275
- with gr.Tab(k):
276
- leaderboard_table_test = gr.Dataframe(
277
- value=pd.DataFrame(data[k]),
278
- interactive=False,
279
- )
280
-
281
-
282
  with gr.Row():
283
  with gr.Accordion("📙 Citation", open=False):
284
- citation_text = """@inproceedings{
285
- anonymous2024the,
286
- title={The Ko{LM}ogorov Test: Compression by Code Generation},
287
- author={Anonymous},
288
- booktitle={Submitted to The Thirteenth International Conference on Learning Representations},
289
- year={2024},
290
- url={https://openreview.net/forum?id=C45YqeBDUM},
291
- note={under review}
292
  }"""
293
  citation_button = gr.Textbox(
294
  value=citation_text,
@@ -299,9 +283,9 @@ note={under review}
299
  )
300
 
301
  gr.HTML(
302
- "<p>We would like to thank the GAIA team for sharing the source code for their leaderboard which was used as a template and HuggingFace for hosting the leaderboard.</p>")
303
 
304
  scheduler = BackgroundScheduler()
305
  scheduler.add_job(restart_space, "interval", seconds=3600)
306
  scheduler.start()
307
- demo.launch(debug=True)
 
1
  import os
2
  import json
3
  import datetime
 
 
 
4
  from email.utils import parseaddr
5
  import numpy as np
6
  import gradio as gr
7
  import pandas as pd
8
  from datasets import load_dataset
9
+ from evaluation.evaluator import question_scorer as eval_scorer
10
  from apscheduler.schedulers.background import BackgroundScheduler
11
  from huggingface_hub import HfApi
12
+ from content import format_error, format_warning, format_log, TITLE
13
+
14
+ # Placeholder for the question_scorer function
15
+ def question_scorer(prediction, gold_answer):
16
+ acc, has_ans = eval_scorer(prediction, gold_answer)
17
+ return acc, has_ans
18
 
 
 
 
19
 
20
+ # Constants and Configuration
21
+ TOKEN = os.environ.get("TOKEN", None)
22
+ OWNER = "Ori"
23
+ DATA_DATASET = f"Ori/AssistantBench_V1.0"
24
+ RESULTS_DATASET = f"Ori/results"
25
+ SUBMISSION_DATASET = f"AssistantBench/submissions"
26
+ LEADERBOARD_PATH = f"{OWNER}/leaderboard"
27
  api = HfApi()
28
 
29
+ YEAR_VERSION = "default"
30
+
31
+ os.makedirs("scored", exist_ok=True)
32
+
33
+ # Load datasets
34
+ eval_results = load_dataset(RESULTS_DATASET, token=TOKEN, download_mode="force_redownload", trust_remote_code=True)
35
+ gold_results = load_dataset(DATA_DATASET, token=TOKEN, trust_remote_code=True)
36
+
37
+ gold_answers = {split: {row["id"]: row["answer"] for row in gold_results[split]} for split in ["test"]}
38
+ gold_difficulties = {split: {row["id"]: row["difficulty"] for row in gold_results[split]} for split in ["test"]}
39
+
40
 
41
+ # Function to get dataframe from results
42
+ def get_dataframe_from_results(eval_results, split):
43
+ local_df = eval_results[split]
44
+ df = pd.DataFrame(local_df)
45
+ df = df.sort_values(by=["Accuracy"], ascending=False)
46
+ numeric_cols = [c for c in local_df.column_names if "score" in c]
47
+ df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
48
+ return df
49
 
50
+ # Update function to format dataframe
51
+ def format_dataframe(df):
52
+ df["Accuracy"] = df["Accuracy"].apply(lambda x: f"**{x:.2f}**")
53
+ if "URL" in df.columns:
54
+ df["Model Name"] = df.apply(lambda row: f"[{row['Model Name']}]({row['URL']})", axis=1)
55
+ df = df.drop(columns=["URL"])
56
+ #df = df.rename(columns={"Model Family": "Base Model"})
57
+ df = df[["Model Name", "Accuracy", "Answer rate", "Precision", "EM", "Accuracy (easy)", "Accuracy (medium)", "Accuracy (hard)", "Base Model", "Organization"]]
58
+ return df
59
 
 
 
60
 
61
+ eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", trust_remote_code=True)
62
+ eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
63
+ eval_dataframe_test = format_dataframe(eval_dataframe_test)
64
 
65
  # Function to restart the space
66
  def restart_space():
67
+ api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
68
+
69
 
70
  TYPES = ["markdown", "markdown", "number", "number", "number", "number", "number", "number", "str", "str"]
71
 
72
 
73
+ # Function to add a new evaluation
74
+ def add_new_eval(
75
+ model_name: str,
76
+ model_family: str,
77
+ url: str,
78
+ path_to_file: str,
79
+ organization: str,
80
+ mail: str,
 
 
81
  ):
82
+ _, parsed_mail = parseaddr(mail)
83
+ if "@" not in parsed_mail:
84
+ return format_warning("Please provide a valid email address.")
85
+
86
+ print("Adding new eval")
87
+
88
+ if model_name.lower() in set(
89
+ [m.lower() for m in eval_results["test"]["Model Name"]]) and organization.lower() in set(
90
+ [o.lower() for o in eval_results["test"]["Organization"]]):
91
+ return format_warning("This model has already been submitted.")
92
+
93
+ if path_to_file is None:
94
+ return format_warning("Please attach a file.")
95
+
96
+ api.upload_file(
97
+ repo_id=SUBMISSION_DATASET,
98
+ path_or_fileobj=path_to_file.name,
99
+ path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_raw_{datetime.datetime.today()}.jsonl",
100
+ repo_type="dataset",
101
+ token=TOKEN
102
+ )
103
+
104
+ file_path = path_to_file.name
105
+ scores = 0
106
+ num_questions = 0
107
+
108
+ difficulty_scores = {"Easy": 0, "Medium": 0, "Hard": 0}
109
+ difficulty_counts = {"Easy": 0, "Medium": 0, "Hard": 0}
110
+
111
+ all_scores = list()
112
+
113
+ with open(f"scored/{organization}_{model_name}.jsonl", "w") as scored_file:
114
+ with open(file_path, 'r') as f:
115
+ submitted_ids = set()
116
+ for ix, line in enumerate(f):
117
+ try:
118
+ task = json.loads(line)
119
+ except Exception:
120
+ return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
121
+
122
+ if "answer" not in task:
123
+ return format_error(
124
+ f"Line {ix} contains no answer key. Please fix it and resubmit your file.")
125
+
126
+ answer = task["answer"]
127
+ task_id = task["id"]
128
+ if task_id not in gold_answers["test"]:
129
+ return format_error(
130
+ f"{task_id} not found in test set. Are you sure you submitted the correct file?")
131
+
132
+ score, has_ans = question_scorer(task['answer'], gold_answers["test"][task_id])
133
+ difficulty = gold_difficulties["test"][task_id]
134
+
135
+ scored_file.write(
136
+ json.dumps({
137
+ "id": task_id,
138
+ "model_answer": answer,
139
+ "score": score,
140
+ "has_ans": has_ans
141
+ }) + "\n"
142
+ )
143
+
144
+ all_scores.append({"score": score, "has_ans": has_ans, "model_answer": answer, 'id': task_id})
145
+ submitted_ids.add(task["id"])
146
+ scores += score
147
+ num_questions += 1
148
+ difficulty_scores[difficulty] += score
149
+ difficulty_counts[difficulty] += 1
150
+
151
+ # Check if all gold answer IDs are present in the submission
152
+ missing_ids = set(gold_answers["test"].keys()) - submitted_ids
153
+ if missing_ids:
154
+ return format_error(f"Submission is missing the following IDs: {', '.join(missing_ids)}")
155
+
156
+ accuracy_easy = difficulty_scores["Easy"] / difficulty_counts["Easy"] if difficulty_counts["Easy"] > 0 else 0
157
+ accuracy_medium = difficulty_scores["Medium"] / difficulty_counts["Medium"] if difficulty_counts["Medium"] > 0 else 0
158
+ accuracy_hard = difficulty_scores["Hard"] / difficulty_counts["Hard"] if difficulty_counts["Hard"] > 0 else 0
159
+
160
+ api.upload_file(
161
+ repo_id=SUBMISSION_DATASET,
162
+ path_or_fileobj=f"scored/{organization}_{model_name}.jsonl",
163
+ path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_scored_{datetime.datetime.today()}.jsonl",
164
+ repo_type="dataset",
165
+ token=TOKEN
166
+ )
167
+
168
+ accuracy = float("{:.1f}".format(np.average([x["score"] for x in all_scores]) * 100))
169
+ coverage = float("{:.1f}".format(np.average([x["has_ans"] for x in all_scores]) * 100))
170
+ em = float("{:.1f}".format(np.average([1 if x["score"] == 1 else 0 for x in all_scores]) * 100))
171
+ precision = float("{:.1f}".format(np.average([x["score"] for x in all_scores if x["has_ans"] == 1]) * 100))
172
+ accuracy_easy = float("{:.1f}".format(accuracy_easy * 100))
173
+ accuracy_medium = float("{:.1f}".format(accuracy_medium * 100))
174
+ accuracy_hard = float("{:.1f}".format(accuracy_hard * 100))
175
+
176
+ eval_entry = {
177
+ "Model Name": model_name,
178
+ "Base Model": model_family,
179
+ "URL": url,
180
+ "Organization": organization,
181
+ "Accuracy": accuracy,
182
+ "Accuracy (easy)": accuracy_easy,
183
+ "Accuracy (medium)": accuracy_medium,
184
+ "Accuracy (hard)": accuracy_hard,
185
+ "Answer rate": coverage,
186
+ "Precision": precision,
187
+ "EM": em
188
+ }
189
+ eval_results["test"] = eval_results["test"].add_item(eval_entry)
190
+
191
+ eval_results.push_to_hub(RESULTS_DATASET, config_name=YEAR_VERSION, token=TOKEN)
192
+
193
+ return format_log(
194
+ f"Model {model_name} submitted by {organization} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")
195
+
196
 
197
+ # Function to refresh the results
198
+ def refresh():
199
+ eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", trust_remote_code=True)
200
+ eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
201
+ eval_dataframe_test = format_dataframe(eval_dataframe_test)
202
+ return eval_dataframe_test
203
 
204
 
205
  # Gradio interface
206
  demo = gr.Blocks()
207
  with demo:
208
+ gr.HTML("<h1>AssistantBench</h1>")
209
+ gr.Markdown("""
210
+ AssistantBench aims to evaluate the ability of web agents to assist with real and time-consuming tasks.
211
+ For more information, please check out our paper or the official website.
212
+ To download AssistantBench, press [here](https://huggingface.co/datasets/AssistantBench/AssistantBench).
213
+ """)
214
+
215
+ gr.HTML("<h2>AssistantBench Leaderboard</h2>")
216
+ with gr.Tab("Results: Test"):
217
+ leaderboard_table_test = gr.Dataframe(
218
+ value=eval_dataframe_test, datatype=TYPES, interactive=False,
219
+ column_widths=["20%"]
220
+ )
221
+
222
+ refresh_button = gr.Button("Refresh")
223
+ refresh_button.click(
224
+ refresh,
225
+ inputs=[],
226
+ outputs=[
227
+ leaderboard_table_test,
228
+ ],
229
+ )
230
+
231
+ gr.HTML("<h2>Making a New Submission</h2>")
232
+ with gr.Accordion("Submit a new model for evaluation"):
233
+ with gr.Row():
234
+ gr.Markdown("""
235
+ To make a new submission, upload a predictions file. Our scoring function can be found [here](https://huggingface.co/spaces/AssistantBench/leaderboard/blob/main/scorer.py). We support JSONL files with the following format:
236
+ ```
237
+ {"id": "task_id_1", "answer": "Answer 1 from your model"}
238
+ {"id": "task_id_2", "answer": "Answer 2 from your model"}
239
+ ```
240
+ """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
  with gr.Row():
242
  with gr.Column():
243
  model_name_textbox = gr.Textbox(label="Model Name")
244
+ model_family_textbox = gr.Textbox(label="Base Model")
245
+ url_textbox = gr.Textbox(label="URL to Model Information")
246
+ with gr.Column():
247
  organization = gr.Textbox(label="Organization")
248
  mail = gr.Textbox(
249
+ label="Contact Email (will be stored privately & used if there is an issue with your submission)")
250
+ file_output = gr.File()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
 
252
+ submit_button = gr.Button("Submit Eval")
 
 
 
 
 
253
  submission_result = gr.Markdown()
254
+ submit_button.click(
255
+ add_new_eval,
256
+ [
257
+ model_name_textbox,
258
+ model_family_textbox,
259
+ url_textbox,
260
+ file_output,
261
  organization,
262
+ mail
263
+ ],
264
+ submission_result,
265
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
  with gr.Row():
268
  with gr.Accordion("📙 Citation", open=False):
269
+ citation_text = """@article{yoran-etal-2024-assistantbench,
270
+ title={AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?},
271
+ author={Ori Yoran and Samuel Amouyal and Chaitanya Malaviya and Ben Bogin and Ofir Press and Jonathan Berant},
272
+ year={2024},
273
+ eprint={?},
274
+ archivePrefix={arXiv},
275
+ primaryClass={cs.CL}
 
276
  }"""
277
  citation_button = gr.Textbox(
278
  value=citation_text,
 
283
  )
284
 
285
  gr.HTML(
286
+ "<p>We would like to thank the GAIA team for sharing the source code for their leaderboard which we used as a template and HuggingFace for hosting the leaderboard.</p>")
287
 
288
  scheduler = BackgroundScheduler()
289
  scheduler.add_job(restart_space, "interval", seconds=3600)
290
  scheduler.start()
291
+ demo.launch(debug=True)