Delete app.py
Browse files
app.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
|
4 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
-
|
6 |
-
# Define hyperparameters
|
7 |
-
max_seq_length = 512
|
8 |
-
max_output_length = 1024
|
9 |
-
num_beams = 16
|
10 |
-
length_penalty = 1.4
|
11 |
-
no_repeat_ngram_size = 2
|
12 |
-
temperature = 0.7
|
13 |
-
top_k = 150
|
14 |
-
top_p = 0.92
|
15 |
-
repetition_penalty = 2.1
|
16 |
-
early_stopping = True
|
17 |
-
|
18 |
-
# Load the pre-trained model and tokenizer
|
19 |
-
model_name = "google/flan-t5-large"
|
20 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=512)
|
21 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
-
|
23 |
-
if torch.cuda.device_count() > 1:
|
24 |
-
device_ids = [i for i in range(torch.cuda.device_count())]
|
25 |
-
model = torch.nn.DataParallel(T5ForConditionalGeneration.from_pretrained(model_name, return_dict=True), device_ids=device_ids)
|
26 |
-
else:
|
27 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name, return_dict=True)
|
28 |
-
|
29 |
-
model.to(device)
|
30 |
-
|
31 |
-
# Define a function to generate a response to user input
|
32 |
-
def chatbot(text):
|
33 |
-
with torch.no_grad():
|
34 |
-
# Tokenize the input text and convert to a PyTorch tensor
|
35 |
-
input_ids = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=max_seq_length).input_ids.to(device)
|
36 |
-
|
37 |
-
# Generate a response using the model
|
38 |
-
if torch.cuda.device_count() > 1:
|
39 |
-
outputs = model.module.generate(input_ids, min_length=max_seq_length, max_new_tokens=max_output_length, num_beams=num_beams, length_penalty=length_penalty, no_repeat_ngram_size=no_repeat_ngram_size, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, early_stopping=early_stopping)
|
40 |
-
else:
|
41 |
-
outputs = model.generate(input_ids, min_length=max_seq_length, max_new_tokens=max_output_length, num_beams=num_beams, length_penalty=length_penalty, no_repeat_ngram_size=no_repeat_ngram_size, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, early_stopping=early_stopping)
|
42 |
-
|
43 |
-
# Decode the response and return it
|
44 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
-
return response
|
46 |
-
|
47 |
-
chat_help_text = "Welcome! This ChatBot is designed to answer questions about a wide range of topics. " \
|
48 |
-
"Please note that the ChatBot may not always provide accurate or complete answers, and may not " \
|
49 |
-
"understand certain questions. To use the ChatBot, simply type in your question in the text box " \
|
50 |
-
"below and hit Enter or click the button. Please keep in mind that the ChatBot is not perfect " \
|
51 |
-
"and may provide inaccurate or incomplete answers. It is best suited for simple factual " \
|
52 |
-
"questions rather than complex or nuanced inquiries."
|
53 |
-
|
54 |
-
# Create a Gradio interface
|
55 |
-
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="NuNet Inferencing Demo",
|
56 |
-
description=chat_help_text)
|
57 |
-
|
58 |
-
iface.launch(share=True)
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|