Spaces:
Runtime error
Runtime error
from transformers import (CLIPProcessor, CLIPModel, AutoProcessor, CLIPSegForImageSegmentation, | |
OneFormerProcessor, OneFormerForUniversalSegmentation, | |
BlipProcessor, BlipForConditionalGeneration) | |
import torch | |
import mmcv | |
import torch.nn.functional as F | |
import numpy as np | |
import spacy | |
from PIL import Image | |
import pycocotools.mask as maskUtils | |
from models.segment_models.configs.ade20k_id2label import CONFIG as CONFIG_ADE20K_ID2LABEL | |
from models.segment_models.configs.coco_id2label import CONFIG as CONFIG_COCO_ID2LABEL | |
# from mmdet.core.visualization.image import imshow_det_bboxes # comment this line if you don't use mmdet | |
nlp = spacy.load('en_core_web_sm') | |
class SemanticSegment(): | |
def __init__(self, device): | |
self.device = device | |
self.model_init() | |
def model_init(self): | |
self.init_clip() | |
self.init_oneformer_ade20k() | |
self.init_oneformer_coco() | |
self.init_blip() | |
self.init_clipseg() | |
def init_clip(self): | |
model_name = "openai/clip-vit-large-patch14" | |
self.clip_processor = CLIPProcessor.from_pretrained(model_name) | |
self.clip_model = CLIPModel.from_pretrained(model_name).to(self.device) | |
def init_oneformer_ade20k(self): | |
model_name = "shi-labs/oneformer_ade20k_swin_large" | |
self.oneformer_ade20k_processor = OneFormerProcessor.from_pretrained(model_name) | |
self.oneformer_ade20k_model = OneFormerForUniversalSegmentation.from_pretrained(model_name).to(self.device) | |
def init_oneformer_coco(self): | |
model_name = "shi-labs/oneformer_coco_swin_large" | |
self.oneformer_coco_processor = OneFormerProcessor.from_pretrained(model_name) | |
self.oneformer_coco_model = OneFormerForUniversalSegmentation.from_pretrained(model_name).to(self.device) | |
def init_blip(self): | |
model_name = "Salesforce/blip-image-captioning-large" | |
self.blip_processor = BlipProcessor.from_pretrained(model_name) | |
self.blip_model = BlipForConditionalGeneration.from_pretrained(model_name).to(self.device) | |
def init_clipseg(self): | |
model_name = "CIDAS/clipseg-rd64-refined" | |
self.clipseg_processor = AutoProcessor.from_pretrained(model_name) | |
self.clipseg_model = CLIPSegForImageSegmentation.from_pretrained(model_name).to(self.device) | |
self.clipseg_processor.image_processor.do_resize = False | |
def get_noun_phrases(text): | |
doc = nlp(text) | |
return [chunk.text for chunk in doc.noun_chunks] | |
def open_vocabulary_classification_blip(self, raw_image): | |
captioning_inputs = self.blip_processor(raw_image, return_tensors="pt").to(self.device) | |
out = self.blip_model.generate(**captioning_inputs) | |
caption = self.blip_processor.decode(out[0], skip_special_tokens=True) | |
return SemanticSegment.get_noun_phrases(caption) | |
def oneformer_segmentation(self, image, processor, model): | |
inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt").to(self.device) | |
outputs = model(**inputs) | |
predicted_semantic_map = processor.post_process_semantic_segmentation( | |
outputs, target_sizes=[image.size[::-1]])[0] | |
return predicted_semantic_map | |
def clip_classification(self, image, class_list, top_k): | |
inputs = self.clip_processor(text=class_list, images=image, return_tensors="pt", padding=True).to(self.device) | |
outputs = self.clip_model(**inputs) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=1) | |
if top_k == 1: | |
return class_list[probs.argmax().item()] | |
else: | |
top_k_indices = probs.topk(top_k, dim=1).indices[0] | |
return [class_list[index] for index in top_k_indices] | |
def clipseg_segmentation(self, image, class_list): | |
inputs = self.clipseg_processor( | |
text=class_list, images=[image] * len(class_list), | |
padding=True, return_tensors="pt").to(self.device) | |
h, w = inputs['pixel_values'].shape[-2:] | |
fixed_scale = (512, 512) | |
inputs['pixel_values'] = F.interpolate( | |
inputs['pixel_values'], | |
size=fixed_scale, | |
mode='bilinear', | |
align_corners=False) | |
outputs = self.clipseg_model(**inputs) | |
logits = F.interpolate(outputs.logits[None], size=(h, w), mode='bilinear', align_corners=False)[0] | |
return logits | |
def semantic_class_w_mask(self, img_src, anns, out_file_name="output/test.json", scale_small=1.2, scale_large=1.6): | |
""" | |
generate class name for each mask | |
:param img_src: image path | |
:param anns: coco annotations, the same as return dict besides "class_name" and "class_proposals" | |
:param out_file_name: output file name | |
:param scale_small: scale small | |
:param scale_large: scale large | |
:return: dict('segmentation', 'area', 'bbox', 'predicted_iou', 'point_coords', 'stability_score', 'crop_box', "class_name", "class_proposals"}) | |
""" | |
img = mmcv.imread(img_src) | |
oneformer_coco_seg = self.oneformer_segmentation(Image.fromarray(img), self.oneformer_coco_processor, self.oneformer_coco_model) | |
oneformer_ade20k_seg = self.oneformer_segmentation(Image.fromarray(img), self.oneformer_ade20k_processor, self.oneformer_ade20k_model) | |
bitmasks, class_names = [], [] | |
for ann in anns: | |
# for ann in anns['annotations']: | |
valid_mask = torch.tensor((ann['segmentation'])).bool() | |
# valid_mask = torch.tensor(maskUtils.decode(ann['segmentation'])).bool() | |
coco_propose_classes_ids = oneformer_coco_seg[valid_mask] | |
ade20k_propose_classes_ids = oneformer_ade20k_seg[valid_mask] | |
top_k_coco_propose_classes_ids = torch.bincount(coco_propose_classes_ids.flatten()).topk(1).indices | |
top_k_ade20k_propose_classes_ids = torch.bincount(ade20k_propose_classes_ids.flatten()).topk(1).indices | |
local_class_names = {CONFIG_ADE20K_ID2LABEL['id2label'][str(class_id.item())] for class_id in top_k_ade20k_propose_classes_ids} | |
local_class_names.update({CONFIG_COCO_ID2LABEL['refined_id2label'][str(class_id.item())] for class_id in top_k_coco_propose_classes_ids}) | |
bbox = ann['bbox'] | |
patch_small = mmcv.imcrop(img, np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]), scale=scale_small) | |
patch_large = mmcv.imcrop(img, np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]), scale=scale_large) | |
op_class_list = self.open_vocabulary_classification_blip(patch_large) | |
local_class_list = list(local_class_names.union(op_class_list)) | |
top_k = min(len(local_class_list), 3) | |
mask_categories = self.clip_classification(patch_small, local_class_list, top_k) | |
class_ids_patch_large = self.clipseg_segmentation(patch_large, mask_categories).argmax(0) | |
valid_mask_large_crop = mmcv.imcrop(valid_mask.numpy(), np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]), scale= | |
scale_large) | |
top_1_patch_large = torch.bincount(class_ids_patch_large[torch.tensor(valid_mask_large_crop)].flatten()).topk(1).indices | |
top_1_mask_category = mask_categories[top_1_patch_large.item()] | |
ann['class_name'] = str(top_1_mask_category) | |
ann['class_proposals'] = mask_categories | |
class_names.append(ann['class_name']) | |
# bitmasks.append(maskUtils.decode(ann['segmentation'])) | |
bitmasks.append((ann['segmentation'])) | |
# mmcv.dump(anns, out_file_name) | |
return anns | |
# below for visualization | |
# imshow_det_bboxes(img, | |
# bboxes=None, | |
# labels=np.arange(len(bitmasks)), | |
# segms=np.stack(bitmasks), | |
# class_names=class_names, | |
# font_size=25, | |
# show=False, | |
# out_file='output/result2.png') |