Image2Paragraph / models /region_semantic.py
Awiny's picture
update lightweight code
b25eb4e
raw
history blame
3.05 kB
from models.segment_models.semgent_anything_model import SegmentAnything
from models.segment_models.semantic_segment_anything_model import SemanticSegment
from models.segment_models.edit_anything_model import EditAnything
class RegionSemantic():
def __init__(self, device, image_caption_model, region_classify_model='edit_anything', sam_arch='vit_b'):
self.device = device
self.sam_arch = sam_arch
self.image_caption_model = image_caption_model
self.region_classify_model = region_classify_model
self.init_models()
def init_models(self):
self.segment_model = SegmentAnything(self.device, arch=self.sam_arch)
if self.region_classify_model == 'ssa':
self.semantic_segment_model = SemanticSegment(self.device)
elif self.region_classify_model == 'edit_anything':
self.edit_anything_model = EditAnything(self.image_caption_model)
print('initalize edit anything model')
else:
raise ValueError("semantic_class_model must be 'ssa' or 'edit_anything'")
def semantic_prompt_gen(self, anns, topk=5):
"""
fliter too small objects and objects with low stability score
anns: [{'class_name': 'person', 'bbox': [0.0, 0.0, 0.0, 0.0], 'size': [0, 0], 'stability_score': 0.0}, ...]
semantic_prompt: "person: [0.0, 0.0, 0.0, 0.0]; ..."
"""
# Sort annotations by area in descending order
sorted_annotations = sorted(anns, key=lambda x: x['area'], reverse=True)
anns_len = len(sorted_annotations)
# Select the top 10 largest regions
top_10_largest_regions = sorted_annotations[:min(anns_len, topk)]
semantic_prompt = ""
for region in top_10_largest_regions:
semantic_prompt += region['class_name'] + ': ' + str(region['bbox']) + "; "
print(semantic_prompt)
print('\033[1;35m' + '*' * 100 + '\033[0m')
return semantic_prompt
def region_semantic(self, img_src, region_classify_model='edit_anything'):
print('\033[1;35m' + '*' * 100 + '\033[0m')
print("\nStep3, Semantic Prompt:")
print('extract region segmentation with SAM model....\n')
anns = self.segment_model.generate_mask(img_src)
print('finished...\n')
if region_classify_model == 'ssa':
print('generate region supervision with blip2 model....\n')
anns_w_class = self.semantic_segment_model.semantic_class_w_mask(img_src, anns)
print('finished...\n')
elif region_classify_model == 'edit_anything':
print('generate region supervision with edit anything model....\n')
anns_w_class = self.edit_anything_model.semantic_class_w_mask(img_src, anns)
print('finished...\n')
else:
raise ValueError("semantic_class_model must be 'ssa' or 'edit_anything'")
return self.semantic_prompt_gen(anns_w_class)
def region_semantic_debug(self, img_src):
return "region_semantic_debug"