File size: 8,660 Bytes
94380fb
 
 
 
 
 
 
d34785a
94380fb
 
 
 
 
 
 
 
 
d34785a
 
 
 
 
94380fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34785a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94380fb
d34785a
 
 
 
 
 
 
 
 
 
 
94380fb
 
d34785a
94380fb
 
 
 
 
 
 
 
 
 
 
 
 
d34785a
 
 
94380fb
 
d34785a
 
 
 
94380fb
d34785a
 
94380fb
 
 
d34785a
94380fb
 
 
 
 
d34785a
 
 
 
 
 
94380fb
d34785a
 
94380fb
 
 
 
d34785a
94380fb
 
 
 
 
 
 
 
d34785a
94380fb
 
 
 
 
 
 
 
d34785a
94380fb
d34785a
 
 
 
 
 
 
 
 
 
 
 
94380fb
 
 
d34785a
94380fb
 
 
 
 
 
 
 
d34785a
94380fb
 
 
 
 
 
 
 
d34785a
94380fb
 
 
 
 
 
 
 
 
d34785a
94380fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import requests
import base64
import os
import asyncio
from huggingface_hub import HfApi
import plotly.express as px
import zipfile  # Importing zipfile to handle ZIP operations

# Initialize the Hugging Face API
api = HfApi()

# Directory to save the downloaded and generated files
HTML_DIR = "generated_html_pages"
if not os.path.exists(HTML_DIR):
    os.makedirs(HTML_DIR)

# Directory to save the ZIP files
ZIP_DIR = "generated_zips"
if not os.path.exists(ZIP_DIR):
    os.makedirs(ZIP_DIR)

# Default list of Hugging Face usernames
default_users = {
    "users": [
        "awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
        "cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
        "phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
        "TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
        "ccdv", "haonan-li", "chansung", "lukaemon", "hails",
        "pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
    ]
}

# Asynchronous function to fetch user content using Hugging Face API
async def fetch_user_content(username):
    try:
        # Fetch models and datasets
        models = list(await asyncio.to_thread(api.list_models, author=username))
        datasets = list(await asyncio.to_thread(api.list_datasets, author=username))
        return {
            "username": username,
            "models": models,
            "datasets": datasets
        }
    except Exception as e:
        return {"username": username, "error": str(e)}

# Function to download the user page using requests
def download_user_page(username):
    url = f"https://huggingface.co/{username}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        html_content = response.text
        html_file_path = os.path.join(HTML_DIR, f"{username}.html")
        with open(html_file_path, "w", encoding='utf-8') as html_file:
            html_file.write(html_content)
        return html_file_path, None
    except Exception as e:
        return None, str(e)

# Function to create a ZIP archive of the HTML files
@st.cache_resource
def create_zip_of_files(files):
    zip_name = "HuggingFace_User_Pages.zip"  # Renamed for clarity
    zip_file_path = os.path.join(ZIP_DIR, zip_name)
    with zipfile.ZipFile(zip_file_path, 'w') as zipf:
        for file in files:
            # Add each HTML file to the ZIP archive with its basename
            zipf.write(file, arcname=os.path.basename(file))
    return zip_file_path

# Function to generate a download link for the ZIP file
@st.cache_resource
def get_zip_download_link(zip_file):
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(zip_file)}">📥 Download All HTML Pages as ZIP</a>'
    return href

# Function to fetch all users concurrently
async def fetch_all_users(usernames):
    tasks = [fetch_user_content(username) for username in usernames]
    return await asyncio.gather(*tasks)

# Function to get all HTML files for the selected users
def get_all_html_files(usernames):
    html_files = []
    errors = {}
    for username in usernames:
        html_file, error = download_user_page(username)
        if html_file:
            html_files.append(html_file)
        else:
            errors[username] = error
    return html_files, errors

# Streamlit app setup
st.title("Hugging Face User Page Downloader & Zipper 📄➕📦")

# Text area with default list of usernames
user_input = st.text_area(
    "Enter Hugging Face usernames (one per line):",
    value="\n".join(default_users["users"]),
    height=300
)

# Show User Content button
if st.button("Show User Content"):
    if user_input:
        username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
        
        # Fetch user content asynchronously
        user_data_list = asyncio.run(fetch_all_users(username_list))
        
        # Collect statistics for Plotly graphs
        stats = {"username": [], "models_count": [], "datasets_count": []}
        
        # List to store paths of successfully downloaded HTML files
        successful_html_files = []
        
        st.markdown("### User Content Overview")
        for user_data in user_data_list:
            username = user_data["username"]
            with st.container():
                # Profile link
                st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")
                
                if "error" in user_data:
                    st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
                else:
                    models = user_data["models"]
                    datasets = user_data["datasets"]
                    
                    # Download the user's HTML page
                    html_file_path, download_error = download_user_page(username)
                    if html_file_path:
                        successful_html_files.append(html_file_path)
                        st.success(f"✅ Successfully downloaded {username}'s page.")
                    else:
                        st.error(f"❌ Failed to download {username}'s page: {download_error}")
                    
                    # Add to statistics
                    stats["username"].append(username)
                    stats["models_count"].append(len(models))
                    stats["datasets_count"].append(len(datasets))
                    
                    # Display models
                    with st.expander(f"🧠 Models ({len(models)})", expanded=False):
                        if models:
                            for model in models:
                                model_name = model.modelId.split("/")[-1]
                                st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
                        else:
                            st.markdown("No models found. 🤷‍♂️")
                    
                    # Display datasets
                    with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
                        if datasets:
                            for dataset in datasets:
                                dataset_name = dataset.id.split("/")[-1]
                                st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
                        else:
                            st.markdown("No datasets found. 🤷‍♀️")
                
                st.markdown("---")
        
        # Check if there are any successfully downloaded HTML files to zip
        if successful_html_files:
            # Create a ZIP archive of the HTML files
            zip_file_path = create_zip_of_files(successful_html_files)
            
            # Generate a download link for the ZIP file
            zip_download_link = get_zip_download_link(zip_file_path)
            st.markdown(zip_download_link, unsafe_allow_html=True)
        else:
            st.warning("No HTML files were successfully downloaded to create a ZIP archive.")
        
        # Plotly graphs to visualize the number of models and datasets each user has
        if stats["username"]:
            st.markdown("### User Content Statistics")
            
            # Number of models per user
            fig_models = px.bar(
                x=stats["username"],
                y=stats["models_count"],
                labels={'x': 'Username', 'y': 'Number of Models'},
                title="Number of Models per User"
            )
            st.plotly_chart(fig_models)
            
            # Number of datasets per user
            fig_datasets = px.bar(
                x=stats["username"],
                y=stats["datasets_count"],
                labels={'x': 'Username', 'y': 'Number of Datasets'},
                title="Number of Datasets per User"
            )
            st.plotly_chart(fig_datasets)
        
    else:
        st.warning("Please enter at least one username. Don't be shy! 😅")

# Sidebar instructions
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click **'Show User Content'**.
3. View each user's models and datasets along with a link to their Hugging Face profile.
4. **Download a ZIP archive** containing all the HTML pages by clicking the download link.
5. Check out the statistics visualizations below!
""")