File size: 8,660 Bytes
94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb d34785a 94380fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
import requests
import base64
import os
import asyncio
from huggingface_hub import HfApi
import plotly.express as px
import zipfile # Importing zipfile to handle ZIP operations
# Initialize the Hugging Face API
api = HfApi()
# Directory to save the downloaded and generated files
HTML_DIR = "generated_html_pages"
if not os.path.exists(HTML_DIR):
os.makedirs(HTML_DIR)
# Directory to save the ZIP files
ZIP_DIR = "generated_zips"
if not os.path.exists(ZIP_DIR):
os.makedirs(ZIP_DIR)
# Default list of Hugging Face usernames
default_users = {
"users": [
"awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
"cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
"phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
"TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
"ccdv", "haonan-li", "chansung", "lukaemon", "hails",
"pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
]
}
# Asynchronous function to fetch user content using Hugging Face API
async def fetch_user_content(username):
try:
# Fetch models and datasets
models = list(await asyncio.to_thread(api.list_models, author=username))
datasets = list(await asyncio.to_thread(api.list_datasets, author=username))
return {
"username": username,
"models": models,
"datasets": datasets
}
except Exception as e:
return {"username": username, "error": str(e)}
# Function to download the user page using requests
def download_user_page(username):
url = f"https://huggingface.co/{username}"
try:
response = requests.get(url)
response.raise_for_status()
html_content = response.text
html_file_path = os.path.join(HTML_DIR, f"{username}.html")
with open(html_file_path, "w", encoding='utf-8') as html_file:
html_file.write(html_content)
return html_file_path, None
except Exception as e:
return None, str(e)
# Function to create a ZIP archive of the HTML files
@st.cache_resource
def create_zip_of_files(files):
zip_name = "HuggingFace_User_Pages.zip" # Renamed for clarity
zip_file_path = os.path.join(ZIP_DIR, zip_name)
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for file in files:
# Add each HTML file to the ZIP archive with its basename
zipf.write(file, arcname=os.path.basename(file))
return zip_file_path
# Function to generate a download link for the ZIP file
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(zip_file)}">📥 Download All HTML Pages as ZIP</a>'
return href
# Function to fetch all users concurrently
async def fetch_all_users(usernames):
tasks = [fetch_user_content(username) for username in usernames]
return await asyncio.gather(*tasks)
# Function to get all HTML files for the selected users
def get_all_html_files(usernames):
html_files = []
errors = {}
for username in usernames:
html_file, error = download_user_page(username)
if html_file:
html_files.append(html_file)
else:
errors[username] = error
return html_files, errors
# Streamlit app setup
st.title("Hugging Face User Page Downloader & Zipper 📄➕📦")
# Text area with default list of usernames
user_input = st.text_area(
"Enter Hugging Face usernames (one per line):",
value="\n".join(default_users["users"]),
height=300
)
# Show User Content button
if st.button("Show User Content"):
if user_input:
username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
# Fetch user content asynchronously
user_data_list = asyncio.run(fetch_all_users(username_list))
# Collect statistics for Plotly graphs
stats = {"username": [], "models_count": [], "datasets_count": []}
# List to store paths of successfully downloaded HTML files
successful_html_files = []
st.markdown("### User Content Overview")
for user_data in user_data_list:
username = user_data["username"]
with st.container():
# Profile link
st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")
if "error" in user_data:
st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
else:
models = user_data["models"]
datasets = user_data["datasets"]
# Download the user's HTML page
html_file_path, download_error = download_user_page(username)
if html_file_path:
successful_html_files.append(html_file_path)
st.success(f"✅ Successfully downloaded {username}'s page.")
else:
st.error(f"❌ Failed to download {username}'s page: {download_error}")
# Add to statistics
stats["username"].append(username)
stats["models_count"].append(len(models))
stats["datasets_count"].append(len(datasets))
# Display models
with st.expander(f"🧠 Models ({len(models)})", expanded=False):
if models:
for model in models:
model_name = model.modelId.split("/")[-1]
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
else:
st.markdown("No models found. 🤷♂️")
# Display datasets
with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
if datasets:
for dataset in datasets:
dataset_name = dataset.id.split("/")[-1]
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
else:
st.markdown("No datasets found. 🤷♀️")
st.markdown("---")
# Check if there are any successfully downloaded HTML files to zip
if successful_html_files:
# Create a ZIP archive of the HTML files
zip_file_path = create_zip_of_files(successful_html_files)
# Generate a download link for the ZIP file
zip_download_link = get_zip_download_link(zip_file_path)
st.markdown(zip_download_link, unsafe_allow_html=True)
else:
st.warning("No HTML files were successfully downloaded to create a ZIP archive.")
# Plotly graphs to visualize the number of models and datasets each user has
if stats["username"]:
st.markdown("### User Content Statistics")
# Number of models per user
fig_models = px.bar(
x=stats["username"],
y=stats["models_count"],
labels={'x': 'Username', 'y': 'Number of Models'},
title="Number of Models per User"
)
st.plotly_chart(fig_models)
# Number of datasets per user
fig_datasets = px.bar(
x=stats["username"],
y=stats["datasets_count"],
labels={'x': 'Username', 'y': 'Number of Datasets'},
title="Number of Datasets per User"
)
st.plotly_chart(fig_datasets)
else:
st.warning("Please enter at least one username. Don't be shy! 😅")
# Sidebar instructions
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click **'Show User Content'**.
3. View each user's models and datasets along with a link to their Hugging Face profile.
4. **Download a ZIP archive** containing all the HTML pages by clicking the download link.
5. Check out the statistics visualizations below!
""")
|