awacke1's picture
Update app.py
c8dae28 verified
raw
history blame
12.6 kB
import streamlit as st
import requests
import base64
import os
import asyncio
from huggingface_hub import HfApi, snapshot_download
import plotly.express as px
import zipfile
import tempfile
import shutil
from bs4 import BeautifulSoup
from PIL import Image
import glob
from datetime import datetime
import pytz
from urllib.parse import quote
# Initialize the Hugging Face API
api = HfApi()
# Directories for saving files
HTML_DIR = "generated_html_pages"
ZIP_DIR = "generated_zips"
SNAPSHOT_DIR = "snapshot_downloads"
for directory in [HTML_DIR, ZIP_DIR, SNAPSHOT_DIR]:
if not os.path.exists(directory):
os.makedirs(directory)
# Default list of Hugging Face usernames
default_users = {
"users": [
"awacke1", "rogerxavier", "jonatasgrosman", "kenshinn", "Csplk", "DavidVivancos",
"cdminix", "Jaward", "TuringsSolutions", "Severian", "Wauplin",
"phosseini", "Malikeh1375", "gokaygokay", "MoritzLaurer", "mrm8488",
"TheBloke", "lhoestq", "xw-eric", "Paul", "Muennighoff",
"ccdv", "haonan-li", "chansung", "lukaemon", "hails",
"pharmapsychotic", "KingNish", "merve", "ameerazam08", "ashleykleynhans"
]
}
async def fetch_user_content(username):
try:
models = list(await asyncio.to_thread(api.list_models, author=username))
datasets = list(await asyncio.to_thread(api.list_datasets, author=username))
return {
"username": username,
"models": models,
"datasets": datasets
}
except Exception as e:
return {"username": username, "error": str(e)}
def download_user_page(username):
url = f"https://huggingface.co/{username}"
try:
response = requests.get(url)
response.raise_for_status()
html_content = response.text
html_file_path = os.path.join(HTML_DIR, f"{username}.html")
with open(html_file_path, "w", encoding='utf-8') as html_file:
html_file.write(html_content)
return html_file_path, html_content, None
except Exception as e:
return None, None, str(e)
@st.cache_resource
def create_zip_of_files(files, zip_name):
zip_file_path = os.path.join(ZIP_DIR, zip_name)
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for file in files:
zipf.write(file, arcname=os.path.basename(file))
return zip_file_path
@st.cache_resource
def get_download_link(file_path, link_text):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file_path)}">{link_text}</a>'
async def fetch_all_users(usernames):
tasks = [fetch_user_content(username) for username in usernames]
return await asyncio.gather(*tasks)
def perform_snapshot_download(repo_id, repo_type):
try:
temp_dir = tempfile.mkdtemp()
snapshot_download(repo_id=repo_id, repo_type=repo_type, local_dir=temp_dir)
zip_name = f"{repo_id.replace('/', '_')}_{repo_type}.zip"
zip_path = os.path.join(SNAPSHOT_DIR, zip_name)
shutil.make_archive(zip_path[:-4], 'zip', temp_dir)
shutil.rmtree(temp_dir)
return zip_path
except Exception as e:
return str(e)
# New function to display HTML files in a grid
def display_html_grid(html_files):
num_columns = 3 # You can adjust this number
for i in range(0, len(html_files), num_columns):
cols = st.columns(num_columns)
for j in range(num_columns):
if i + j < len(html_files):
with cols[j]:
with open(html_files[i+j], 'r', encoding='utf-8') as file:
html_content = file.read()
soup = BeautifulSoup(html_content, 'html.parser')
st.subheader(f"Page: {os.path.basename(html_files[i+j])}")
st.components.v1.html(str(soup.body), height=300, scrolling=True)
# New function to extract and display images from HTML
def display_images_from_html(html_file):
with open(html_file, 'r', encoding='utf-8') as file:
html_content = file.read()
soup = BeautifulSoup(html_content, 'html.parser')
images = soup.find_all('img')
for img in images:
src = img.get('src')
if src and src.startswith('http'):
#st.image(src, use_column_width=True)
st.image(src, use_container_width=True)
# New function to extract and display videos from HTML
def display_videos_from_html(html_file):
with open(html_file, 'r', encoding='utf-8') as file:
html_content = file.read()
soup = BeautifulSoup(html_content, 'html.parser')
videos = soup.find_all('video')
for video in videos:
src = video.find('source').get('src')
if src and src.startswith('http'):
st.video(src)
def main():
st.title("🧑‍💼People🧠Models📚Datasets")
user_input = st.text_area(
"Enter Hugging Face usernames (one per line):",
value="\n".join(default_users["users"]),
height=300
)
if st.button("Show User Content and Download Snapshots"):
if user_input:
username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
user_data_list = asyncio.run(fetch_all_users(username_list))
stats = {"username": [], "models_count": [], "datasets_count": []}
successful_html_files = []
snapshot_downloads = []
st.markdown("### User Content Overview")
for user_data in user_data_list:
username = user_data["username"]
with st.container():
st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")
if "error" in user_data:
st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
else:
models = user_data["models"]
datasets = user_data["datasets"]
html_file_path, html_content, download_error = download_user_page(username)
if html_file_path and html_content:
successful_html_files.append(html_file_path)
st.success(f"✅ Successfully downloaded {username}'s page.")
# Add expander to view HTML content
with st.expander(f"View {username}'s HTML page"):
st.markdown(html_content, unsafe_allow_html=True)
else:
st.error(f"❌ Failed to download {username}'s page: {download_error}")
stats["username"].append(username)
stats["models_count"].append(len(models))
stats["datasets_count"].append(len(datasets))
with st.expander(f"🧠 Models ({len(models)})", expanded=False):
if models:
for model in models:
model_name = model.modelId.split("/")[-1]
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
if st.button(f"Download Snapshot: {model_name}", key=f"model_{model.modelId}"):
with st.spinner(f"Downloading snapshot for {model_name}..."):
result = perform_snapshot_download(model.modelId, "model")
if isinstance(result, str):
st.error(f"Failed to download {model_name}: {result}")
else:
snapshot_downloads.append(result)
st.success(f"Successfully downloaded snapshot for {model_name}")
else:
st.markdown("No models found. 🤷‍♂️")
with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
if datasets:
for dataset in datasets:
dataset_name = dataset.id.split("/")[-1]
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
if st.button(f"Download Snapshot: {dataset_name}", key=f"dataset_{dataset.id}"):
with st.spinner(f"Downloading snapshot for {dataset_name}..."):
result = perform_snapshot_download(dataset.id, "dataset")
if isinstance(result, str):
st.error(f"Failed to download {dataset_name}: {result}")
else:
snapshot_downloads.append(result)
st.success(f"Successfully downloaded snapshot for {dataset_name}")
else:
st.markdown("No datasets found. 🤷‍♀️")
st.markdown("---")
if successful_html_files:
st.markdown("### HTML Grid View")
display_html_grid(successful_html_files)
st.markdown("### Image Gallery")
for html_file in successful_html_files:
display_images_from_html(html_file)
st.markdown("### Video Gallery")
for html_file in successful_html_files:
display_videos_from_html(html_file)
html_zip_path = create_zip_of_files(successful_html_files, "HuggingFace_User_Pages.zip")
html_download_link = get_download_link(html_zip_path, "📥 Download All HTML Pages as ZIP")
st.markdown(html_download_link, unsafe_allow_html=True)
else:
st.warning("No HTML files were successfully downloaded to create a ZIP archive.")
if snapshot_downloads:
snapshot_zip_path = create_zip_of_files(snapshot_downloads, "HuggingFace_Snapshots.zip")
snapshot_download_link = get_download_link(snapshot_zip_path, "📥 Download All Snapshots as ZIP")
st.markdown(snapshot_download_link, unsafe_allow_html=True)
if stats["username"]:
st.markdown("### User Content Statistics")
fig_models = px.bar(
x=stats["username"],
y=stats["models_count"],
labels={'x': 'Username', 'y': 'Number of Models'},
title="Number of Models per User"
)
st.plotly_chart(fig_models)
fig_datasets = px.bar(
x=stats["username"],
y=stats["datasets_count"],
labels={'x': 'Username', 'y': 'Number of Datasets'},
title="Number of Datasets per User"
)
st.plotly_chart(fig_datasets)
else:
st.warning("Please enter at least one username. Don't be shy! 😅")
st.sidebar.markdown("""
## How to use:
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
2. Click **'Show User Content and Download Snapshots'**.
3. View each user's models and datasets along with a link to their Hugging Face profile.
4. For each model or dataset, you can click the "Download Snapshot" button to download a snapshot.
5. **Download ZIP archives** containing all the HTML pages and snapshots by clicking the download links.
6. Check out the statistics visualizations below!
7. **New features:**
- View all downloaded HTML pages in a grid layout
- Browse through image and video galleries extracted from the HTML pages
""")
if __name__ == "__main__":
main()